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Abstract 

Silurian-age Niagaran “pinnacle reefs” of the Michigan Basin host an immense hydrocarbon resource, existing as closely spaced, highly 

compartmentalized reservoirs that have produced >500 million barrels of oil and 2.9 trillion cubic feet of natural gas. Many of these fields are 

approaching, or have already passed, economic viability of primary production, but the high degree of compartmentalization makes them a 

potential target for CO2 enhanced oil recovery, as well as natural gas storage. The primary objective of this study was to produce geologically 

precise 3D static models of Niagara-Lower Salina Reef Complexes, which could be used as fundamental inputs for dynamic fluid-flow 

modeling. A robust depositional model was first built for the Columbus III field, which has a high density of data with 32 cored wells at ~300m 

well spacing over 3 km
2
. The new model resulted in the observation that Niagara-Lower Salina Reef complexes are highly asymmetrical with

predictable internal facies distributions that are strongly influenced by an east-northeast paleo-wind direction. Application of the new 

asymmetrical reef model to reefs throughout the basin shows remarkable consistency with respect to the overall asymmetry and facies 

distribution patterns. This new asymmetrical reef model was then used to identify lateral facies distributions where little core data exists, and 

used in combination with observed diagenetic overprint to define reservoir flow units. Rock properties within the 3D static reservoir were 

populated using porosity-permeability data obtained from conventional whole core analysis. For the Columbus III field, the validity of the 

modeled HC volume estimates, which were calculated from porosity, fluid saturations, and fluid contacts, was confirmed by a near exact match 

with pressure-derived estimates provided by the field’s operator. This study highlights the importance of using sequence stratigraphy and rock 

typing to define reservoir flow units for static reservoir models. 
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Stratigraphic cross-section of the Columbus III reef complex illustrating the observed distribution of lithofacies, 
associated depositional environments, GR log signatures, and vertical stacking in the 6 type section cores. 
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Generalized depositional environments of the Michigan 
Basin in the Silurian during Niagaran deposition 

(modified from Briggs et al. 1978). 
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Chronostratigraphic chart for the Silurian 
(Niagaran·Cayugan) with corresponding 

depositional settings. 
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Schematic structural cross-section (not to scale) of the Silurian (Niagaran-Cayugan) units in the Michigan Basin from the 
northern carbonate platform, across the center of the basin, to the southern carbonate platform. 
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1: Best Case Scenario· Niagaran/A-1 Carbonate completely dolomitized 
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Reef Core Dolomitevs. Limestone 2: Partial Dolomitization· Facies Selective; abundant early-marine cements 
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3: Salt Plugging, Top Down Salt Plugging of the Brown Niagaran 

Core-Scale Diagenetic Trends 
4: Coalescing Reef Complexes - Partial Dolomitization 

1. Depositional Facies 
Distribution: 

pred ict vert ical & lateral 
facies distributions using 

conceptual geologic 
model and all availab le 

data (cores, logs, seismic) 

2, Diagenetic Overprint: 
predict vertical & lateral 

diagenetic overpr int 
from reg ional trends 
and ava ilable data 

3. Flow Zone Designation : 
delineate flow zones 

(geo-bodies) with similar pore 
types & sizes (pore typ ing ); 

requires combination of 
depositional and diagenetic 

understanding 

4. Model Flow Zones: 
hand contour flow zones 

to construct 3D static model 
that best represents 

geologic knowledge gained 
in steps 1-3 

• Dolomite 

• Limestone 

2-Zone Model 
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2-Zone vs. 9-Zone Model Comparison 
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Blind Well Test 

Model Validation - Volume Comparison 
Total Pore 

HCPVOil HCPV Gas HCPV 
Volume (x106 ftl) (x106 ftl) Total 
(X106ft3) (x10' ff) 

9-Zone Model 302 112 174 286 

BWGS .. 112 175 287 
Estimates 


