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Abstract 

The Wichita-Amarillo fault system defines the southern edge of the Anadarko basin and records Pennsylvanian inversion of a 

Cambrian continental rift. The basement-involved fault system is comprised of multiple segments and the subject of vigorous 

debate over the amounts of low angle thrust faulting vs. high angle left-lateral wrench faulting. This paper presents a crustal 

scale cross section that integrates outcrop work on Ft. Sill, Wichita Wildlife Refuge, and Slick Hills with subsurface data to 

consider the nature, deformation history, and seismic hazard of the Meers Fault. A recent 14,200ft well (Kimbell Ranch 32-1) 

drilled in the Slick Hills two miles north of the Meers Fault crossed a repeated Arbuckle-Timbered Hills-Basement (Rhyolite-

Granite) section before drilling into granite wash beneath what is probably the Mountain View Fault. These thrusts are 

expressed log-based cross sections near NW Fort Sill Field, 15mi SE. Outcrops on Ft. Sill 17 miles south of the Meers Fault 

show minor folding and thrusting in the Timbered Hills and Arbuckle. These outcrops also indicate the same Timbered Hills-

Rhyolite nonconformity that crops out north of the Meers Fault, at approximately the same topographic elevation of both sides 

of the Meers Fault. Thus, the Meers Fault did not have appreciable vertical movement during the Pennsylvanian. The data 

indicate that the Meers Fault is cutoff by the Mountain View Fault, which leads to the intriguing question as to the causes of the 

Meers Fault 
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Seismic Risk of the Meers Fault, SW Oklahoma: A Hoary Giant or Great Imposter?  

Andrew Cullen / Warwick Energy & University of Oklahoma

STATEMENT of the PROBLEM: The southern edge of the Anadarko basin in SW Oklahoma is defined by a regional fault system that records

Pennsylvanian-aged inversion of a failed Cambrian intra-continental rift; an aulacogen formed during the break-up of Rodinia (Hoffman, 1974;

Wickham, 1978; Keller & Baldridge, 2002). This thick-skinned, basement-involved system is the subject of a long and on-going debate over the

relative partitioning of low-angle shortening vs. high-angle strike slip faulting (see Gay, 2014). The Meers fault, originally mapped as the

Thomas fault (Harlton, 1951) was renamed for the town of Meers (Miser, 1954); it is regarded as one the region’s prominent tectonic elements

(Harlton, 1964; Hamm et al., 1964). A prominent fault scarp exposed at the surface on the south side of the Slick Hills can be traced for over

24km (Figures 2 and 3). It is the only Holocene fault scarp in the Midcontinent. The fault’s last movement as an oblique reverse fault displaced

Quaternary alluvium (Gilbert 1983; Crone & Luza, 1986), possibly producing an earthquake between Mw 6.8 to 7.1 (Ramelli & Slemmons, 1986;

Luza et al., 1987; Baker & Austin, 2015). Cetin (2003) suggests that the rupture extended an additional 16km to the NW suggestive of an even

larger earthquake. The Meers fault strikes N60oW and is optimally orientated within the modern regional stress field for reactivation (Darold &

Holland, 2015). Thus, the Meers fault is of great interest from both a regional geotectonic perspective and as a modern seismic hazard There are

conflicting interpretations of the nature of the Meers fault. All studies of the fault -trenching (Crone & Luza, 1986), shallow seismic (Miller et al.,

1982), magnetic profiles (Cecil-Jones, 1990) and coring (Collins, 1992)- indicate the fault is a reverse fault that dips steeply north into the

Anadarko basin. As it is unlikely the fault turns back over itself, its northerly dip is at odds with interpretations treating the fault as a major SW

dipping thrust / reverse fault that placed the Wichita Mountains over the Slick Hills block (Brewer et al. 1982; McConnell, 1989; Soreghan et al.,

2012). The Slick Hills block, which is bounded on the north by the Mountain View fault system, is an intermediate fault block between the

Wichita Mountains and the deep Anadarko Basin The following slides and text attempt to resolve the question of the nature of the faults that

bound the Slick Hills block (Figure 2) and whether or not the Meers fault is a significant tectonic basement fault.

SUMMARY: A true scale crustal cross section (Fig.13) is presented that integrates outcrop work on Ft. Sill & the Slick Hills with bore hole,

gravity, and seismic data. A key constraint is the Kimbell Ranch 32-1 (TD 15,280) that drilled through the Slick Hills block 2mi north of the

Meers fault. The KR32-1 crossed a repeated Arbuckle-Timbered Hills-basement section beneath the NE dipping Meers Fault and then cut a much

deeper second thrust before terminating in granite wash in the footwall of the Mountain View fault (Figures 4 and 5). The Mountain View fault,

the major basin-bounding fault, dips 20-30o SW beneath the Slick Hills and Wichita Mountains. It cuts off the Meers fault. Regional subsurface

mapping, seismic data, and outcrop observations indicate that the Wichita Mountains have been thrust over the Slick Hills by a fault named here

as the Wichita Mountains fault (Figure 5-9) . Outcrops on Ft. Sill document minor folding & low angle thrusting in the Timbered Hills &

Arbuckle section that overlie the same Cambrian nonconformity that occurs in the Slick Hills (Figures 10 and11). Considering that current levels

of erosion exhume a Permian landscape, the fact that the same Cambrian nonconformity crops out at similar topographic elevations of both sides

of the Meers fault strongly suggests that the fault does not have significant throw (<10,000ft). The Meers fault is interpreted here as a back thrust

of similar the Blue Creek Canyon fault. If the Meers fault does not extend into the basement, then we are led to the intriguing question as to the

cause of its Holocene rupture and possibly examining whether assumptions its estimating paleo-magnitude are correct - delicately balanced

granite boulders in the Wichita Mountains appear inconsistent with the estimates of Mw 6-7 for its last rupture ca. 1000 years ago. Rather than a

major tectonic feature the Meers fault may be a relatively small back thrust (inverted Cambrian rift fault?) confined to the Slick Hills block rather

than a hoary giant; the ultimate seismic hazard lurking elsewhere in the basement. Certainly, more work & further study is warranted.

Modified from poster- Oct. 6  2016.
AAPG Midcontinent Sectional, Tulsa OK, 
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KEY POINTS
1. The Meers Fault is a high-angle back “thrust” cut-off by the Mt. View Fault. The 

Meers fault does not extend to the basement; the fault has a favorable orientation for 
re-activation in the modern stress field (see Darold & Holland, 2014)

2. The shallow dips of the Mt. View and Wichita Mt. faults have unfavorable geometries 
for re-activation owing to high normal stress across their fault planes. 

3. The surface rupture on the Meers Fault may reflect deeper earthquake possibly along 
much older high-angle normal rift-related. Thus, the Meers Fault may be an imposter 
for a seismic hazard lurking deeper in the basement. 
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Parting comments & several of many unresolved questions

A)  The Cambrian rift (aulacogen) was uplifted and exhumed during Pennsylvanian orogenesis, BUT is it truly 
inverted in the strict sense that the original master crustal detachments became thrust faults during 
Pennsylvanian orogenesis?

B)  What was the width of the Cambrian rift, 60km or 120km? Note that Hansen et al. (2013) interpret a 
large volume of volcanic & syn-rift clastic fill east of the Wichita & Mountain View faults. This suggests 
strongly asymmetric rifting (simple shear) with implications regarding rheology, crustal coupling, strain rate, 
and cumulative extension (see Huismans & Beaumont  2014).

C)  Restoration of the cross-section presented here results in a tabular, lopolithic, geometry for the mafic & 
ultramafic Cambrian igneous rocks. It is interesting to consider that subsequent thrusting led to thickening 
this dense root and may be a controlling factor in the anomalous Permian subsidence patterns rather than 
buoyant isostatic uplift typically observed structurally thickened continental crust (Soreghan et al.  2012). 

Hansen et al. (2013) indicate a
very asymmetric relationship
between rift fill and mafic root.

Restoration of  Cross Section

• Rhyolites beyond mafic root.
• Thick rift fill NE of mafic igneous root

Sedimentary cover not  fully restored - getting close.
Need additional displacement on WMF

Basement restores and has original shape of broad sill-like intrusion

?   ?  ?

60km vs 120 km width
B

C



The outcrops of the Timbered Hills-Arbuckle Groups on Fort Sill
have been largely neglected since Decker (1939). These outcrops
represent key stratigraphic and structural information in the
upper plate that can be compared with studies in the Slick Hills,
north of the Meers Fault. For example, use trilobite zonations in
the two blocks to estimate and compare Cambro-Ordovician
subsidence rates in order to build better rifting models for the
Southern Oklahoma Aulacogen
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Figure 2 Local Geological Features SE end of Meers fault

Trenches
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seismic line

The minimum rupture length (~31km) along the Meers fault is well
established, but the maximum length may be as long as 58km (Baker &
Holland, 2015). Measurements of displacement (2-3m)are constrained by a
what amount to a single transect where the fault has been gouged, shot,
shocked and cored. Therefore, estimates of paleo-magnitude based on
these two parameters are not well constrained (see Baisi & Weldon 2006).
Additional study is needed, e.g., shallow seismic data (ground penetrating
radar) to constrain the amount Holocene motion on the Meers fault.
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Balanced granite tors, Elk Mountain seem inconsistent with a
major earthquake on the Meers fault within the last 10,000
years. Cosmogenic isotope studies could determine if these
are the remaining remnants of once more widespread
balanced rocks.

Three Suggestions for Additional Study
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Author(s) Year Title Source

Baker, E. and Holland, A. 2013

Probalistic  Seismic Hazard Assessment of the Meers Fault, SW Oklahoma; Modeling and 

Uncertainties Oklahoma Geological Survey Special Publication, 2013-02

Brewer, et al. 1983

COCORP profiling across the Southern Oklahoma aulacogen: Overthrusting of the Wichita 

Mounatins and compressionwith in the Anadarko basin Geology, v. 11, 109-114.

Cetin, H. 2002

Comment on ‘‘Known and suggested Quaternary faulting in the midcontinent United States’’ by 

Russell L. Wheeler and Anthony Cronin Engineering Geology 69 (2003) 193–210

Darold, A. and Holland, A. 2015 Preliminary Oklahoma optimal fault orientations Oklahoma Geological Survey Map. OF4-2015

Donovan, N., Marchini, D., McConnell, D., 

Beauchamp, W., Sanderson, W. 1989 Structural imprint of the Slick Hill, Southern Oklahoma.

in Anadarko Basin Symposium, Johnson K. editor. Oklahoma 

Geological Survey Circular 90, 85-96.

Donovan, R. N. 1988 Geology of the Slick Hills

Oklahoma Geological Survey Guidebook 24 (Donovan,R. N. ed. ) 1-

12.

Gay. P.S. 2014

Some Observations on the Amarillo/Wichita Mountains Thrust-Fold Belt and its Extensions 

Southeast into East Texas and Northwest into New Mexico Shale Shaker p. 338-366

Gueydan, F., Morency C., Brun, J.P. 2008 Continental rifting as a function of lithosphere mantle strength Tectonophysics 460. 83–93

Hamm, R.,Denison, R.E., Merritt, C.A., 1964 Basement rocks and structural evolution of southern, Oklahoma. Oklahoma Oklahoma Geological Survey Bulletin 95

Hanson, R., Puckett R. E., Keller, R. R., 

Brueseke, M. and others

Intraplate magmatism related to opening of the southern Iapetus Ocean: Cambrian Wichita igneous 

province in the Southern Oklahoma rift zone Lithos 174, 57-70

Harlton, B. H. 1951 Faults associated with the sedimentary section of the Wichita Mountains, Oklahoma AAPG Bulletin 35, 988-999.

Hayes, L. 1952 A Study of the subsurface geology of the NE Comanche County, OK University of Oklahoma, MSc thesis, 67 p.

Hoffman,. P. 1974

Aulacogens and their relationship to geosynclines; with a Proterozoic example from Great Slave 

Lake, Canada SEPM Special Publication 19, 38-55

Huismans R. S. and Beaumont C 2014 Rifted continental margins: the case for depth-dependent stretching Earth Planetary Science Letters 407, 148-162.

Jones, C.M.

Structural controls of Holocene reactivation of the Meers fault, southwestern Oklahoma, from 

magnetic studies Geological Society of America Bulletin

Keller R. G. 2012 A Review of Southern Oklahoma Structures

http://www.ogs.ou.edu/MEETINGS/Presentations/OilGasMar2012/

Keller_Southern_OK.pdf

Luza, K. and McCrone, A. 1988 Holocene deformation associated with the Meers Fault, Southwestern Oklahoma

Oklahoma Geological Survey Guidebook 24 (Donovan,R. N. ed. ) 

68-74.

Luza, K. et al. 1987 Investigation of the Meers Fault, southwest Oklahoma Oklahoma Geological Survey Special Publication, 87-1

Miller, R, Steeples, D., Meyers, P. 1990 Shallow seismic reflection survey across the Meers fault, Oklahoma Geological Society of America Bulletin 102, 18-25.

Perry, W. J. 1989 Tectonic evolution of the Anadarko Basin Region, Oklahoma. USGS Bulletin 1866A, 19p.

Ramelli, A. R. and Slemmons, D. B. 1988 Neotectonic activity of the Meers Fault

Oklahoma Geological Survey Guidebook 24 (Donovan,R. N. ed. ) 

68-74.

Soreghan, G.S., Keller, R.G., Gilbert, C.M. 

and others 2012

Load induced subsidence of the Ancestral Rocky Mountains recorded by preservation of Permian 

landscapes Geosphere 8, 654-668.

Stephens and Davis 2005 Geronimo Prospect Review Unpublished cross sections

Sullivan, C. and Reisz R.R. 2002

 Lower Permian fissure deposits in the Slick Hills, Oklahoma, the oldest known fossiliferous 

palaeokarst Journal of Vertebrate Paleontology 2: 112A

Takken, S. 1967 Subsurface geology of north Gotobo area, Oklahoma. Shale Shaker 17, 115-123.

Wickham, J. S. 1978 The southern Oklahoma aulacogen. In structural style of the Arbuckle region.  3. 9-41.

Geological Socienty of America, South-Central section Guidebook 

for field trip 3. 9-41.
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