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Abstract 

 
A realistic model of the subsurface in reservoir modeling should include fractures. We have developed a novel method to include discrete 
fractures into 2D or 3D elastic models in order to gain insight into the wave phenomena related to the presence of fractures. 
 
In order to determine the presence of fractures in the subsurface one has to rely on seismic data. In particular, azimuthal velocity anisotropy has 
been observed in many regions and this has been attributed to aligned fractures. Other wave phenomena related to the presence of fractures are 
phase-shifting, frequency-filtering and scattering of the reflected, transmitted and converted waves. Furthermore, fracture interface waves have 
also been observed in practice. 
 
There are two main approaches to incorporate the effects of fractures: Using equivalent medium theories or using a numerical scheme to 
simulate the fractures. There have been many theories proposed in the literature that predict the effective media parameters associated with a 
particular fracture distribution. All of these models make different assumptions about the fractures, in particular they usually assume small, 
circular, non-intersecting cracks. The advantage of the equivalent medium theories is that they provide analytic expressions for the media 
parameters as a function of the fracture parameters. On the other hand, they have limited applicability because of the large number of 
assumptions. 
 
Regarding the numerical schemes to incorporate the fractures, there are many approaches that have been proposed in the literature. The main 
advantage of the numerical schemes is that they require few assumptions and therefore they have a broad applicability and are useful to validate 
the equivalent medium theories. In particular, the approaches based on the linear-slip model require the least number of assumptions. 
 
We propose a new scheme that incorporates fractures using the linear-slip model into a discontinuous Galerkin method. This approach can be 
used to simulate a wide variety of wave phenomena related to fractures. We validate our method using a set of parallel fractures and compare 



the results with those obtained using an equivalent medium. We show results for a single elongated horizontal fracture and show numerical 
examples using 2D and 3D models with one fracture and two orthogonal fractures. 
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Motivation

� Fractures are a common feature
in the subsurface

� Observed in many scales, from
faults to micro-cracks

� Modeling of fractured media has
important practical applications,
for example:

1 In the oil and gas industry
(Sayers, 2007)

2 In the geothermal industry (Wu
et al., 2002)

http://www.leeds.ac.uk/StochasticRockFractures/
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Fractures and Wave Propagation

(Barton, 2007)

� To determine the presence of
fractures in the subsurface we have
to rely on seismic data

� Parallel micro-cracks introduce
seismic anisotropy

� Other wave phenomena related to
fractures:
� Phase shifting

� Frequency filtering

� Dispersion of the reflected and
transmitted waves

� Fracture interface waves

(Schoenberg and Douma, 1988; Carcione,
1996; Pyrak-Nolte et al., 1996)
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Numerical Strategies
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Two approaches to incorporate
the effects of fractures in wave
propagation:

1 Using equivalent media
theories

2 Incorporating discrete
fractures in a numerical
scheme
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Equivalent Media Theories

� Equivalent Media Theories predict the
effective elastic properties of fractured
media given some fracture parameters.

� Common assumptions:
� Idealized crack shape,
� small aspect ratio and crack density compared

to wavelength,
� Cracks are isolated with respect to fluid flow.

� Examples of Effective Media Theories:
� Kuster-Toksöz,
� Differential Effective Medium,
� Hudson,
� Eshelby-Cheng.

(Mavko et al., 1998; Saenger et al., 2004, and references therein)

http://www.cefor.umn.edu
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Numerical Approaches

� Numerical approaches that have
been proposed in the literature:

� Use locally an effective medium
(Vlastos et al., 2003),

� Incorporate locally a low velocity and
low density inclusion into a finite
difference scheme (Saenger and
Shapiro, 2002; Saenger et al., 2004),
and

� Explicitly use a displacement
discontinuity condition using the
linear-slip model (Zhang, 2005;
Zhang and Gao, 2009).

� The advantage: they
require few
assumptions and
therefore they have a
broad applicability and
are useful to validate
the equivalent medium
theories.

� Approaches based on
the linear-slip model
require the least
number of
assumptions.
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The Linear Slip Model

The Linear-Slip Model (LSM)
Prescribes a linear relation
between the traction vector and
jump in the displacement:

[u] = Zτ ,

where
[u] is the jump of the
displacement,
τ is the traction vector at the
fracture and
Z is the fracture compliance
matrix.

For a fracture with rotational
symmetry about the normal, the
fracture compliance matrix is
given by (Schoenberg and
Douma, 1988; Zhang and Gao,
2009)

Zij = ZNninj + ZT (δij − ninj),

where ZT and ZN are the
tangential and normal
components of the compliance
matrix.
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Discontinuous Galerkin Method

The Discontinuous Galerkin Method
(DGM) is a generalization of FEM
that allows for the basis functions to
be discontinuous at the element
interfaces.

The interior-penalty formulations
(Rivière, 2008):

SIPG: Symmetric
Interior-Penalty
Galerkin

NIPG: Non-symmetric

IIPG: Incomplete

Advantages

� it can accommodate
discontinuities in the wave
field

� it can be energy
conservative

� it can handle more general
meshes

� it is suitable for local time
stepping and parallel
implementations
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Interior-Penalty Weak Formulation
Find u ∈ X such that for all v ∈ X∑

E∈Ωh

(
(ρ∂ttu,v)E + BE (u,v)

)
+
∑
γ∈Γh

Jc
γ(u,v ; S,R) =

∑
E∈Ωh

(f ,v)E

where X =
{
ϕ | ϕ ∈ H1(E) ∀ E ∈ Ωh, ϕ = 0 on ΓD

}
,

BE (u,v) =

∫
E

(
λ∂iui∂jvj + µ(∂jui + ∂iuj )∂jvi

)
dΩ,

Jc
γ(u,v ; S,R) = −

∫
γ

{τi (u)}[vi ] dγ + S
∫
γ

{τi (v)}[ui ] dγ

+ R
∫
γ

{λ+ 2µ}[ui ][vi ] dγ,

τi (u) = λuk,k ni + µ(ui,j + uj,i )nj is the traction vector, Ωh is the set of
elements and Γh is the set of all faces between elements. The parameter
R is the penalty, and S is a parameter that takes the values S = 0 for
IIPG, S = −1 for SIPG and S = 1 for NIPG.

De Basabe & Sen Elastic Waves in Fractured Media September 6, 2016 12 / 40



Accuracy and Stability of DGM

� Grid dispersion and stability analyzed in De Basabe et al.
(2008) and De Basabe and Sen (2010).

� Superconvergence of the grid-dispersion error with respect to
the sampling ratio for the symmetric formulation and nodal
basis functions,

� The numerical anisotropy is negligible for basis of degree 4 or
greater,

� Stability condition in 2D given by

α∆t
∆x

≤ 0.25,

where ∆x is the smallest spatial increment, ∆t is the size of the
time step and α is the largest P-wave velocity.
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Proposed Numerical Scheme

Find u ∈ X such that for all v ∈ X∑
E∈Ωh

(
(ρ∂ttu,v)E + BE (u,v)

)
+
∑
γ∈Γc

Jc
γ(u,v) +

∑
γ∈Γf

J f
γ(u,v) =

∑
E∈Ωh

(f ,v)E

where Γc ⊂ Γh is the subset of all faces where the displacement
field is continuous, Γf ⊂ Γh is the subset of faces that represent
fractures, and

J f
γ(u,v) =

∫
γ

Z−1
ij [uj ][vi ] dγ.

The linear slip condition is weakly imposed through this term.
(De Basabe et al., 2016)

De Basabe & Sen Elastic Waves in Fractured Media September 6, 2016 14 / 40



Advantages of the Proposed Scheme

� It does not require mesh refinements
near the fractures. There is no loss
of accuracy because the fractures
are at the element interfaces.

� It can be used to simulate fractures
of any shape or orientation

� Intersecting fractures can be
included without special treatment

� Fracture parameters are taken into
account through the fracture
compliances
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Fracture-Induced Anisotropy

For this numerical experiment, we
compare the wave fields computed
using an equivalent anisotropic model
based on Schoenberg and Douma
(1988) and using a fractured elastic
model.

Fracture spacing and compliances are
given as follows:

NF hf (m) ZT (m/Pa) ZN (m/Pa)
199 20 16×1011 12×1011

397 10 8×1011 6×1011

793 5 4×1011 3×1011

F

H

-� 2 km

Ω = 2× 2 km
α = 5.8 km/s
β = 3.8 km/s
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Fracture-Induced Anisotropy
Anisotropic model
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Fracture-Induced Anisotropy
∆ = 20 m, ZT = 16 × 10−11, and ZN = 12 × 10−11

-2000

-1000

0

1000

z 
(m

)

-2000 -1000 0 1000
x (m)

-2000

-1000

0

1000

z 
(m

)

-2000 -1000 0 1000
x (m)

Ux Uz

De Basabe & Sen Elastic Waves in Fractured Media September 6, 2016 18 / 40



Fracture-Induced Anisotropy
∆ = 10 m, ZT = 8 × 10−11, and ZN = 6 × 10−11
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Fracture-Induced Anisotropy
∆ = 5 m, ZT = 4 × 10−11, and ZN = 3 × 10−11
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Fracture-Induced Anisotropy
Seismogram 1 km above the fracture with a horizontal offset of 1 km
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Random Vertical Fractures

Background medium
� Vp= 3310 m/s
� Vs= 1620 m/s
� ρ= 2500 Kg/m3

Dry fractures with
� ZT = 5.137× 10−11

� ZN = 4.258× 10−11

The source is at the center with
a peak frequency of 45 hz.
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Random Vertical Fractures
Vertical fractures of 1 to 5 m of length
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Random Vertical Fractures
Wavefield at t = 0.16 s using an Equivalent Anisotropic Medium

540,384 Fractures – Hudson model

De Basabe & Sen Elastic Waves in Fractured Media September 6, 2016 24 / 40



Random Vertical Fractures
Wavefield at t = 0.16 s using Discrete Fractures

540,384 Fractures – DG
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Random Vertical Fractures
Wavefield at t = 0.16 s using an Equivalent Anisotropic Medium

1,013,220 Fractures – Hudson model

De Basabe & Sen Elastic Waves in Fractured Media September 6, 2016 26 / 40



Random Vertical Fractures
Wavefield at t = 0.08 s using Discrete Fractures

1,013,220 Fractures – DG
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Fracture Interface Waves

� There are two types of fracture interface
waves (Pyrak-Nolte et al., 1996):

� The fast interface wave is exited by
the component of the source that is
parallel to the fracture.

� The slow interface wave is exited by
the component of the source that is
orthogonal to the fracture.

� Their velocity is bounded above by the
S-wave velocity and below by the
Rayleigh wave velocity. These waves
converge to the Rayleigh wave for
Z =∞.

� The amplitude of these waves is
maximized with the source at the
fracture.

F H

-� 5 km

Ω = 5× 4 km
α = 5.8 km/s
β = 3.8 km/s
ρ = 2.6 g/cm3

100 Hz source
Mesh is 500×400
elements
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Fracture Interface Waves
Horizontal source at the fracture, t = 0.37s, ZT = ZN = 10−8
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Fast interface wave (Pyrak-Nolte et al., 1996; Gu et al., 1996).
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Fracture Interface Waves
Horizontal source at the fracture

Synthetic seismograms at a horizontal offset of 1.8 km using
Z = 0, Z = 10−9 and Z =∞
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Interface wave travels faster than the Rayleigh wave.
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Fracture Interface Waves
Vertical source at the fracture, t = 0.37s, ZT = ZN = 10−8
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Slow interface wave (Pyrak-Nolte et al., 1996; Gu et al., 1996).
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Fracture Interface Waves
Vertical source at the fracture

Synthetic seismograms at a horizontal offset of 1.8 km using
Z = 0, Z = 10−9 and Z =∞
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Finite Fracture in 3D

� 1 km × 1 km orthogonal
fractures.

� Source 0.1 km above the
fracture.
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Conclusions

� The numerical results show
that parallel elongated
fractures introduce numerical
anisotropy. Furthermore,
fracture-induced anisotropy
converges to the analytic
solution obtained by Backus
averaging.

� The high resolution of the
method allows the simulation
of a wide variety of wave
phenomena related to
fractures, including interface
waves.

� The proposed method is not
restricted to simplified models,
it can be applied to:

� Intersecting fractures,

� Fracture sets (not necessarily
parallel),

� Models with topography and
any type of heterogeneities,

� 3D models.
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