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Abstract 

 

The characterization of shales is challenging due to their very small pore sizes. In many previous works, we have shown that Nuclear Magnetic 

Resonance (NMR) relaxation techniques are well suited for detecting and quantifying water in nanopores. However, the usual T2 distribution 

of relaxation times does not necessarily represent the true distribution of pore sizes in nanoporous samples due to diffusive exchanges between 

pores, yielding apparent narrow pore size distribution. The NMR cryoporometry experiment relies on the shift of the melting temperature of the 

saturating liquid, which is itself a function of pore size according to Gibbs-Thomson theory. In practice, a sample (a cylinder of diameter 4 mm 

and length 20 mm) saturated with water is rapidly frozen at about -30° C and then heated slowly while the amount of water melted at a given 

temperature is measured by NMR. Typically the range that can be explored lies between 2 nm and 1 micron, well suited for the study of shales. 

Importantly outside this range, the pore volume can be determined but a pore size cannot be associated with this volume. We used this 

technique on different shales from different origins and compared the results with other techniques such as NMR T2 distribution, high pressure 

mercury injection and nitrogen adsorption. The measured distributions can differ significantly and we discuss the various physical reasons 

behind. The NMR cryoporometry technique open new horizons for characterizing shales in their natural hydrated state. 
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Motivations 

The characterization of shales is challenging due to their very small pore sizes. In previous works,  we have shown that 

Nuclear Magnetic Resonance (NMR) relaxation techniques are well suited for detecting and quantifying water in nanopores. 

Existing techniques, including NMR T2, have several drawbacks: 

Mercury intrusion Need a dry sample ,  Destructive , > 4 nm 

N2 adsorption Need a dry sample   < 100 nm 

Thermoporometry (DSC) Similar to NMR cryoporometry 

NMR relaxation Need calibration – pore coupling 

Imaging (FIB, SEM, TEM…..) Resolution –  field of view compromise 

NMR cryoporometry: principle 

The melting point depression  Tm of a confined liquid depends on the pore size  (Gibbs-Thomson equation) 

Range of pore size:  2 nm  up to 500 nm with water, 6nm up 2 µm with cyclohexane.  Pore volumes outside these 

ranges can be determined to obtain total porosity.   

  

Pore size distribution:  

V: volume of liquid 

Pore size x:  curvature dV/dS of a pore of 

volume V and surface S   

Direct detection and quantification of  the amount of liquid with NMR: 

Very short relaxation of ice compared to water  liquide volume can be measured directly 

At a given temperature below zero, small pores still contain  liquid water instead of ice  
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Experimental set-up 

Special  probe inside a standard low field NMR set-up 

Temperatures regulated and controled wih a Peltier system  (sensitivity 0.01°C) 

Sample size: D=4mm 

                      L<20mm 

(powder or cylinder) 

Tests 

Test sample: mixture of calibrated porous glass (CPG) 

Porous glasses with cylindrical pores with 2 diameters: 15 nm (CPG15) and 139 nm (CPG139).  
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Derivative/normalization 

Method 15 nm  139nm Inter-

granular 

+bulk 

Weight 27.0 27.3 45.6 

Cryoporometry 26.0 27.0 47.0 

T2 Relaxation 21.5 88.5 

T2 Relaxation at  

-0.15°C 

28.4 24.6 - 

Derived quantities from NMR cryoporometry in 

agreement with weight 

NMR T2 quantification not accurate due to 

diffusive pore coupling 

Shale samples 

Caprock sample: Callovo-Oxfordian formation, porosity 14.8%, water permeability 7.3 nD     (1 nD=10-21 m2) 
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NMR cryoporometry 

NMR T2 relaxation 

(same sample) 

Mercury injection (sister plug) 

Pore size distribution in qualitative agreement with published data (imaging, Song et al. 2015) 

NMR T2 distribution  narrow distribution due to pore coupling effect (averaging effect)  

Difference with mercury injection  throat size instead pore size, percolation issue     

Conclusion 

The NMR cryoporometry technique is well suited to measure pore size distribution for water saturated samples in the range 

2 nm up to 500 nm. Pore volumes outside this range can be measured to obtain total porosity. The typical duration of the 

experiment is 24 hours. For pore sizes smaller than about 500 nm, NMR T2 distribution are not representative of pore size 

distribution due to pore coupling effects. 

To perform cryoporometry, a specific NMR probe is required and can be installed in standard NMR low-field apparatus.  

Sample from Montney  (porosity 3%)  
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