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Abstract

The sediments deposited at ODP Site 1003 on the margin of Great Bahama Bank (GBB) exhibit a range of chemical and isotopic compositions.
The mineralogy at this site consists predominantly of low-Mg calcite (LMC) and in the upper portion (< 200 mbsf) High Magnesium Calcite
(HMC) and Aragonite. The aragonite and HMC are derived predominantly from the Bank itself, while the LMC is derived from pelagic sources
and that produced by neomorphism of aragonite and HMC and recrystallization of biogenic LMC. The variability of the carbonate §'°O
presents an interesting challenge. Modern sediments at Site 1003 have a composition between -0.5%o0 and 0%o, which over the upper 200m
increases to +2.0%o. This corresponds to a decrease in aragonite abundance and a consequent increase in (LMC). Below 200 mbsf there is a
trend back towards negative 8'°O values, not accompanied with any mineralogical change. Here we investigate these two trends using clumped
isotopes (A47) to determine if these are primary “mixing model” effects or a result of carbonate diagenesis. Porewater chemistry is extremely
sensitive to the alteration of carbonates, changes too small to detect via chemical or isotopic measurement of the sediments can make
significant changes to the pore fluid. Here we present porewater data, which provide evidence for diagenesis at this site. Strontium ion
concentration gradients provide a minimum estimate for diagenetic rate, as they reach the saturation state of Celestite (SrSO4) in the upper
200m of sediment. Additionally we present porewater 8'°0 and Sr*’/Sr*® of pore fluids; these two measurements provide evidence for deeper
diagenesis at this site. The chemical processes present in the subsurface at ODP Site 1003 demonstrate that the co-evolution of sediments and
porewaters occurs over a range of temperatures due to geothermal heating, necessitating independent verification of temperature. The precision
of this method is constantly improving and as more facilities are able to measure clumped isotopes of carbonates, it could become an invaluable
tool for understanding systems such as these.
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Problem and Goals

Rates of neomorphism and recrystallization can be quantified in
carbonates by (i) physical examination of the sediments, and (ii) by
examining the geochemistry. Geochemical techniques include

* Fluxes of trace elements such as Sr from the pore fluids

* Sr-isotopes in the solids and pore fluids Q

* Stable oxygen isotopes of the solids and pore fluids o

 Calcium isotopes 6%4/40Ca

* Clumped Isotopes A, 9
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Samples are taken from the Site 1003 from Leg 166 of the ODP. B **‘/j
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Bahama platform and LMC from pelagic sources. Porewater samples mgaﬁm% Island
were squeezed fro the sediments during Leg 166 and all trace Straits of Florida  (¢®" | 1003

elements were analyzed as well as 00 and Sr isotopes Q(Right
hand panel). Modeling using these values suggests isotopic
exchange between sediments and pore water is prevalent at depth,
which could be facilitated by the neomorphism of sediments. With
increasing depth not only is aragonite converted to LMC, but the
input of LMC diminishes. The goal is to understand how these
signals are retained in the geochemistry as an analogue for ancient
sediments.
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Trend towards more positive 620 values, highly variable. Most

variance correlates with changes in %Aragonite

,613C  and A,

. Indicative of a overall cooling (downward) trend. This trend,
which is accompanied by a change in water 680 values suggest a
substantial portion (70%) of this is a result of neomorphism near

the seafloor.
200-520 mbsf

Abrupt loss of peloidal material in sediment, nearly complete loss of
aragonitic material. Some variability which appears to correlate with
, although further sampling would be necessary to

changesin A,;
confirm this behavior. Sharp decreases in 680 correlate with a hiatus

in deposition.

520-900 mbsf

Trend towards more negative 620 values (downcore), associated with
higher temperatures from clumped isotopes. Suggesting recrystallization
at depth in a more 620 enriched pore water at higher temperatures.

See Pore fluids panel for more detail. Some aragonite and dolomite

present.
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High variability in 680, trend towards more negative §'3C values.
No overall trend in 620 or clumped isotopes
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The figure shows the change in the 6180 in the bulk sediments with increasing depth.

A diagenetic origin for 6'°0 variability on the margins of the Great Bahama Bank, insights from clumped is

Upper 200 mbsf: diagenesis or sediment mixing?

The upper 200 mbsf shows strong evidence of mixing between material derived from pelagic and platform sources.
Highly significant (n = 28, p < 0.001) correlations between mineralogy, conventional isotopes, and clumped isotopes
suggest variability in oxygen isotopes could be the result of recrystallization at 20 + 0.5°C. Measured benthic
temperatures at 1003 are slightly lower 16°C. These sediments record a change in water 620 over this interval,
suggesting that these reactions occurred in a sediment-buffered system.
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End-member mixing linear statistics: Water 680 calculated using measured 6180, mineralogy, temperature from clumped

Calcite / Aragonite end-members

Calcite Aragonite
613C (VPDB) 1.98%o 5.09 + .07%o0
6180 (VPDB) 2.00%o -0.07 £ 0.07%o
Temperature 20.6°C 31.2+£0.57°C
Water 680 .
+ 90
(SMOW) 4.3%o 2.8 £ .8%o0

We model overall chemical
behavior at Site 1003 as a 3-part
mixing model

@ riatform sediment
@ shallow, cool diagenesis
9 Deep, warm diagenesis

Temperature from A,

isotopes and weighted mean of Grossman + Ku (1986) and Kim + O’Neil (1997)
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%Recrystallization =

(31.2°C-20.6°C)/(31.2°C — 16.0°C) = 70%
Age at 200 mbsf: 2.7 my -> 25% / myr

These estimates suggest the deeper sediment consists of roughly 30% original
calcite, which is less reactive than the aragonite material. This confirms a
previous interpretation that some of this trend is a result of changes in sediment
source. The high temperatures recorded in sediments deeper than 200mbsf
suggest that this neomorphosed material may react further with porewaters,
however this interpretation is difficult to confirm.

Significance

* Clumped Isotopic signatures record a record of
original depositional and diagenetic temperatures.

* These can be used to constrain the fluid in which
neomorphism and recrystallization occurred.

* Using this method, we have shown that sediments
deposited adjacent to carbonate platforms such as
GBB in which the majority of the sediments are

aragonite, undergo rapid transformation to LMC.

* Similar high rates of diagenesis would restricted to
periods in which the oceans experienced high
Mg/Ca ratios (Aragonite Seas).
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QReaction-diffusion model for Strontium Isotopes

As aragonite dissolves, strontium accumulates in pore fluids. This Sr87/Sr86 aC az - ocC
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