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Abstract

Upscaling is the process of changing a fine grid to a coarse grid while preserving the original geology and its properties (Schlumberger, 2014). Many
petroleum fields produce oil and gas from large volume reservoirs. A modeling technique is commonly applied to many of these fields to understand
internal architecture of the reservoir and the fluid flow behavior of the reservoir simulation. High heterogeneity reservoirs require high resolution
geological model s which are usually constructed on a fine scale with an immense number of cells.

The necessity of upscaling is due to the limitations of computing hardware, computing speed and the time required to process the reservoir simulation.
Therefore, in order to test the fluid flow behavior of the reservoir, model upscaling is required to convert the fine scale model to a coarser scale. Reducing
the number of cells while preserving the fundamental integrity of the model allows for the delivery of simulation results within a reasonable run time.

However, the upscaling process presents several challenges. The main challenge is to avoid upscale elimination of the potentially favorable vertical and
lateral reservoir heterogeneity, which will avoid false results of reservoir simulation. Optimal upscaling approaches must: 1) honor reservoir
heterogeneity, 2) retain thin beds of reservoir, and 3) predict the possible reservoir heterogeneity in areas where no data is available.

To conduct optimum upscaling, project engineers need to understand the realities of reservoir heterogeneities that originate from the nature of
depositional environments. In order to test the fluid flow behavior of the reservoir on such a fine scale model, both geologists and engineers are
confronted with long computational times leading to the point of impracticality. Frameworks for reservoir projects have a relatively brief time period;
thus, they should collaborate closely to conduct optimum upscaling to deliver correct fluid flow behavior through simulation.

The Hunton Group of Oklahoma provides the data for this study. Integration among geology, petrophysics, geophysics, geomechanics, and fluid
dynamics is truly essential for addressing upscaling. Petrel Software will be used for this study to develop 3D geological models for the Hunton reservoir
with sufficient detail to represent vertical and lateral reservoir heterogeneities. This study will integrate natural fractures from core, borehole image logs


mailto:benmadi.milad@ou.edu

and outcrop(s) to examine their impacts on the flow simulation before and after upscaling. In addition, geostatistical analyses will be utilized to predict all
possibilities of the reservoir heterogeneities, such as permeability and porosity, in sparse areas. Specific workflows are presented to examine the optimum
upscaling characterized in this study
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ABSTRACT

Upscaling is the process of changing a fine grid to a coarse grid while preserving the original geology and its
properties (Schlumberger, 2014). Many petroleum fields produce oil and gas from large volume reservoirs. A
modeling technique is commonly applied to many of these fields to understand internal architecture of the
reservoir and the fluid flow behavior of the reservoir simulation. High heterogeneity reservoirs require high
resolution geological models which are usually constructed on a fine scale with an immense number of cells.

The necessity of upscaling is due to the limitations of computing hardware, computing speed and the time
required to process the reservoir simulation. Therefore, in order to test the fluid flow behavior of the reservoir,
model upscaling is required to convert the fine scale model to a coarser scale. Reducing the number of cells while
preserving the fundamental integrity of the model allows for the delivery of simulation results within a reasonable
run time.

However, the upscaling process presents several challenges. The main challenge is to avoid upscale elimination of
the potentially favorable vertical and lateral reservoir heterogeneity, which will avoid false results of reservoir
simulation. Optimal upscaling approaches must: 1) honor reservoir heterogeneity, 2) retain thin beds of reservoir,
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The Hunton Group of Oklahoma provides the data for this study. Integration among geology, petrophysics,
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logs and outcrop(s) to examine their impacts on the flow simulation before and after upscaling. Also, geostatistical
analyses will be utilized to predict all possibilities of the reservoir heterogeneities, such as permeability and
porosity, in sparse areas. Specific workflows are presented to examine the optimum upscaling characterized in this
study.
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2) What is an optimum upscaling that can give true indications of fluid flow?

-— ) Figure 11. The workflow illustrating the steps of building fine scale models. The simulation result 1, 2, and 3 will be processed without upscaling
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Figure 1. Map of Oklahoma showing geologic provinces and the Hunton Group distribution (Modified from Northcutt
and Campbell, 1996, Jordan, 1964; Northcutt, 2000). Yellow dash lines show the boundaries of the Hunton Group.
Yellow polygon to the left shows the location of seismic volume and well data in Pottawatomie County (study area).
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Figure 12. Workflow illustrating the steps of building coarse scale models. Light blue boxes represent the fine scale models, the orange boxes
i I S I - . . represent the upscaled models and the green boxes represent the simulation results. The selected three fine scale models are the input for this
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Figure 2. Depositional model for Chimneyhill subgroub through high estimate static model will be compared with the simulation result from the high estimate static model of Fig. 11, which is considered as a
Bois dArc Formation strata of the Hunton Group (modified from reference simulation result before upscaling. The comparisons of simulation results before and after upscaling will lead determining if the
Fritz and Medlock, 1994). reservoir heterogeneities were preserved or not. The thin beds of reservoir will not be upscaled to preserve their heterogeneities.
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