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Abstract 

 

The Cretaceous succession offshore Uruguay records the interaction between along- and down-slope processes with the 

underlying rift-controlled basin topography. A recently acquired 3D seismic survey, covering 13,500 km
2
, images a spectacular 

array of sedimentary features including, in stratigraphic order, large sedimentary waves, giant sediment drifts and mixed 

turbiditic/contouritic systems. The sediment wave packages are related to two discrete sediment entry points. In planform the 

packages are approximately 30km wide and comprise a series of curvilinear ridges elongated parallel to the palaeo-slope; in dip 

section the packages are relatively tabular (c. 500m thick) but are internally composed of a series of low-angle clinoforms with 

down-stepping geometry, originating an apparent progradation. They are linked to an updip, thick prograding unit that delivered 

sediments into the basin until the Late Cretaceous. Above the sediment wave package a series of downdip converging, giant 

slope-attached sediment drifts can be traced along the continental slope for over 125km. The package exhibits a ‘pinch and 

swell’ architecture along strike with thicknesses varying between 100m in the moat regions to over a kilometer at the drift crest. 

Individually the drifts have wavelengths up to 45km and can be traced for over 100km perpendicular, and oblique, to the 

palaeomargin. Internally, the drifts comprise a series of packages that migrate from north to south, creating a series of laterally 

shifting depocentres. The location of these drifts is directly related to the interaction of a southwards flowing current with 

underlying basement topography. Enhanced drift development and clustering occurs up-current from basement highs (a 

mailto:badalo04@yahoo.co.uk


topographic backstop). Horizon terminations on the stoss side of the drifts suggest that sediments were eroded and reworked 

within the moat region. Whilst the drifts are dominantly acoustically transparent the moat regions tend to have the highest 

amplitudes, which are inferred to represent coarser grained material, transported downslope and reworked by currents. 

Downslope flows exploited the moat regions and subtle topographic lows within the drift, forming linear channel systems - 

some with local overspill – and lobes. Many of these features, which are only observed due to the size and quality of the dataset, 

pose questions about our fundamental understanding of margin morphologies and bedform development in the deep marine 

environment. 
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Outline of talk

• Objectives

– Describe array of Cretaceous sedimentary 

features/depositional environments offshore 

Uruguay

– Illustrate interplay between downslope and 

along slope processes (contourites vs. 

turbidites)

– Discuss hybrid contouritic-turbiditic systems

• Regional context

• Cretaceous observations

– Deltas (?), sediment waves, and slumps

– Mounded drifts

– Hybrid contouritic-turbiditic systems

• Discussion

• Conclusions
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Regional Context - Dip

• Complex basement topography

• Focus on Pelotas basin

• Rift and sag phases (continental to very shallow 

marine)

• Drift: marine, progressive deepening

• Modern day-Tertiary terraced profile

SENW V.E. X5

Cretaceous

Tertiary

10Km

Punta del Este basin

Rift and sag

Pelotas basin

125Km

3D PSDM 

(13500sqkm)

N

3D PSDM dip line 

+

-



Regional Context - Strike

Key bounding surfaces within contouritic-turbiditic

sequence

Tentative ages (based on regional work, nearest offset wells >100km to the 

NW, Lobo and Gaviotin)
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Cretaceous Basin Fill
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Basin evolution - Basement

• Rift-inherited basin topography

• Topography has major control 

on sediment dispersal system

• Progressive deepening of the 

basin, from continental/shallow 

marine to deep water 

environments
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Offshore Uruguay – main sediment entry points
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Offshore Uruguay – main sediment entry points
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Offshore Uruguay – main sediment entry points
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Offshore Uruguay – main sediment entry points
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Offshore Uruguay – main sediment entry points
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Basin evolution – slope fans and sediment 

waves (?)
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Basin evolution – sediment waves (?)
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Slope fans, sediment waves (or slumps?)
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Sediment waves (or slumps?)

2.5km

Sediment waves or slumps (or a 

combination of the two?)
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Sediment waves (or slumps?)
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Basin evolution – hybrid system
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Basin evolution – hybrid system

c.i. 200m

25km
N

25km
N

c.i. 200m

10Km

6Km

7Km

9Km

VE X7SW  NE

8Km

RMS surface slice (20m 

thick)



Basin evolution – drifts and hybrid system 
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Basin evolution – drifts and hybrid system 
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• Drifts orientated 
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palaeo coastline

• Attached to upper 

slope region, run till 

basin floor
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orientation?



Drifts
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Cretaceous hybrid contouritic-turbiditic system
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• 2: postdates main drift
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Drifts (slumped)
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Cretaceous Drifts | Processes

Drift development due 

to low velocity, low 

concentration currents 

interacting with 

basement topography –

progradation and 

aggradation likely 

related to standing 

wave development 

(topographically high 

region in north of basin)

29

Streaky amplitudes on lee side due to 

flow circulation within moats reworking 

sediment back up towards drift crest 

Stoss side erosion due to 

intra-moat eddies

?

Moat regions capture downslope gravity currents 

and rework/ winnow sediment in-situ (erode stoss

side and smear sediment up the lee side of the drift)

After Stow et al., 2009



Basin evolution – abandonment
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• Drift relief increases through time 

as a result of aggradation, slope 

instability and downslope incision

• Drifts (and moats) capped by 

predominantly fine-grained 

sediments that smooth pre-existing 

topography



Cretaceous Drifts – What's driving?

LateEarly Paleocene Eocene Oligocene Miocene
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Seafloor Geomorphology

• Terraced profile, canyon, mass 

failures, pockmarks, scours 

(mostly at break of slope)
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Modern Ocean Currents

• Area of complex ocean currents

– Brazil Current

– Malvinas Current

– Brazil-Malvinas Confluence

– + others…..

Hernandez-Molina et al (submitted) Hernandez-Molina et al (2009)



• Complexity on the basin floor – confluence (eddies?)

• Are modern features all fully representative of the modern current directions?

• Upper Slope – Brazil Current?

• Lower Slope/ Basin Floor – Antarctic Bottom Waters?

• Short term fluctuations: tidal influence

• Long term (monthly): phases of the moon (control flow velocity and direction)

• Current reversal

Current Velocities

Current meters: 1 week recording

25km



Water Column Imaging
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25km 25km
Uruguay, Cretaceous

Antarctica, Modern Day

10km

Cretaceous Drifts | Analogues

Rebesco et al., 2002

Rebesco et al., 2002

Are drifts somehow controlled/influenced by  

fracture zones/major structural elements? 
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Basin evolution - summary

Sediment waves (affected 

by slope instability) and 

slope fans. First evidence of 

current reworking.

Sediment wave fields eroded by  

downslope channels

Hybrid system: interplay between drift 

aggradation, slumping, and downslope 

transport/processes
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Summary & Conclusions

• Cretaceous basin fill largely controlled by underlying rift-inherited topography

• Evidence of NS ocean currents from Early Cretaceous (Tertiary and 

Present Day are different)

• Drift development due to a combination of topographic control on deposition, 

contour currents and down slope currents; location of drift features centred 

around rift axis

• Drift relief increases through time as a result of aggradation, slope instability 

and downslope incision

• Drift moats exploited by downslope processes

• Slumps and contour currents disrupt “channel” fills within moats

• Ability for contour currents to create submarine unconformities, lineations

and giant scours on the basin floor




