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Abstract

The extent of a compressional orogenic event is often determined by the last folds or faults toward the hinterland. However, the stress
conditions which allow for compressional deformation are gradational into the “undeformed” stable craton resulting in a zone of high
horizontal stress beyond the mapped front. This zone is of tremendous importance in petroleum systems as this can become the unconventional
reservoir “sweet spot” in the basin. The orientation of faults should be predictable given knowledge of the shortening direction. However,
inherited pre-existing fabric can influence the orientation and intensity of the younger deformation. South Texas has experienced many of the
major tectonic events that define the southwestern US including PC-Cambrian rifting, orogenic uplift in the Penn and E. Permian associated
with the Marathon-Ouachita Orogeny, Triassic-Jurassic rifting, compressional folding in the Tertiary Laramide Orogeny, and extensional rift
fault development in the Neogene during Basin and Range rifting. Boundaries that define the deformation associated with these events overlap
and can be difficult to discern. A well exposed road cut north of Sanderson, Texas contains significant oblique extensional faults (rake 5-25
deg) with NW (315) and NE- (020) oriented faults. However, satellite imagery over the exposure reveals that only a few of the faults are visible
linear elements in satellite images. Scaling back from the outcrop, more than 30,000 mappable fractures/faults define a 60-km wide zone
between the last Laramide fold and the stable craton. When exposed, the faults within this zone have limited offset (most are less than 3 m,
subseismic resolution) because of their oblique offset. Fault and fracture orientations vary along this zone due to the fabric of older, Paleozoic
subsurface structures. Observation of slickensides, massive sparry calcite development, and fault damage zones suggest that the NW faults are
shearing along distributed faults which allows for significant extensional opening of the NE fault sets. No element in outcrop honors “ideal”
orientations, likely a result of the reactivation of inherited Paleozoic structural fabric. Much work remains to fully characterize the zone of
faulting ahead of the so called “Laramide Front” but outcrops provide valuable insight into the hierarchy of fracture development expected in
similar age rocks along orogenic fronts in both surface and subsurface systems.
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Relevance of study

« The space between detectable foreland deformation (i.e., folds
and large faults) and the undeformed craton is not well defined,
but numerous small faults develop as pre-existing structures are
reactivated during orogenic compression

« The occurrence and freqguency of the faults and fractures has
relevance to key South Texas basins, but likely exists in most
foreland systems




Tectonic Events Chart

« Several major tectonic events
within South Texas-Northern
Mexico area

 Early rift-transform faults
establish the “fabric” which
controls younger tectonic
elements and subsequent basin
development

* Younger elements record
complexity of multiphase
deformation from the P-C
basement fabric
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Late Carboniferous to Early Permian Ancestral Rocky Mountains (ARM) Orogeny
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Late Carboniferous to Early Permian Ancestral Rocky Mountains (ARM) Orogeny
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Paleozoic Tectonic Basement Inversion and
Thin-Skinned Detachment — Ewing (1984)
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Thin-Skinned Paleozoic (ARM) Compressional Folding — Marathon Fold Belt
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Tectonic Events Chart

« Several major tectonic events
within South Texas-Northern
Mexico area

 Early rift-transform faults
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controls younger tectonic
elements and subsequent basin
development
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Tectonic Elements of South Texas
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Late Cretaceous Outcrop Exposure with Small Faults
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Late Cretaceous Outcrop Exposure with Small Faults
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Late Cretaceous Outcrop Exposure with Small Faults
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Mapped Faults Exposed in Late Cretaceous Carbonates
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Oblique Extensional Slip Faults Exposed in Roadcut

Total outcrop length is ~375 m
(oriented NNW to SSE)




Compressional Deformation: Oblique-Slip Faults (Low Rake Angles)

Orientation is NE (038)
Dip is high (78)

Rake is low (8)
Right-lateral fault
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Compressional Deformation: Oblique-Slip Faults (Low Rake Angles)
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NE-oriented fractures
Greater oblique extensional offset
Significant calcite spar within
growing void
Multiple episodes of opening,
calcite precipitation and slip (both
extensional and low angle
obligue
More frequent fracture intensity
halos

NW-oriented fractures have
Limited offset slip
Limited calcite spar
Lower intensity of secondary
fractures
Higher frequency of occurrence
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Compressional Deformation: Oblique-Slip Faults (Low Rake Angles)

NE Fault NW Fault

N *

Left-Lateral,
Oblique-Slip
Faults

24




Favd ¥

/ £ T bt \

[ [/ / / LU
{ A

Mapped Faults Exposed in L. Cretaceous Carbonates

; | "/,"’ \_: : ;‘:\. .
528 | “DEVI ST RIVFR

T

« Cretaceous faults reflect Pre-Cambrian to Paleozoic basement structural elements
« Thin-skinned fold belt has little to no effect on orientation preference
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Where is the brittle deformation “limit” of an orogeny
In when pre-existing faults are present?
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Conclusions

« The brittle deformation “limit” in the orogenic forelands may represent a
broad zone (10-100s km) with significant deformation

* Pre-existing structures or “tectonic inheritance” plays a critical role in
concentrating brittle fault and fracture elements in orogenic foreland

 Faults that develop have little vertical offset, but very high concentrations
(100s m spacing) and significant fault-related fracture zones

« Consideration of these fault and fractures systems are critical to
understanding permeability heterogeneity in subsurface reservoirs
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