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Rocks cool during extension
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Magma-poor margins
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Modes of extension & oceanization

Sequential faulting mode
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Presenter’s notes: In the 1970°s and 80’s two very different models were put forward in an attempt to explain architecture and
symmetry of conjugate margins and basins. However, it was soon clear that these models were oversimplifications of reality and that
they could not explain the richness in extensional styles observed in Nature. Roger Buck took a very important step by describing and
classifying extensional styles into narrow, wide and core-complex modes and showing that the transition of one to the other would
occur with increasing lower crustal viscosity. (Notes by presenter continued on next slide)



(Notes by presenter continued from previous slide)

By looking at the richness of extensional styles along the South American margin, we have come to the conclusion that there is a
fourth extensional mode, the sequential faulting mode, which when combined with the previous modes can well explain the wide
variety of margin architectures that we see. We have also found that the predominance of one or the other modes during extension is
intimately related to the width and nature of the continent-ocean transition zone.



Modes of extension & oceanization
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3. Transition to oceanic spreading
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* Very little magmatism.
- Slow extension (ultra-slow end-member)

+ Cool Moho (~450-600 C) at the start of rifting (P-T-t
data).




3. Transition to oceanic spreading
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2. Fault geometry with extension
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Increasing importance of brittle deformation

Presenter’s notes: Finally we have been looking at (1) how the change in fault geometry from the little extended sectors, where
faults are planar, to the more extended sectors where occurring faults appear listric--or detachment-like, (2) how is the related to the
amount of differential thinning in the crust and (3) what are the implications of it for sedimentation, subsidence and heat-flow.



Effect of crustal thickness on margin width/symmetry
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Effect of crustal thickness on margin width/symmetry

Viscosity, 5 mmiyr, Wet quartz lower crust, 35 km crust 28.01 ma
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Modes of extension & oceanization

Core Complex Mode
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Modes of extension & oceanization
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Effect of crustal thickness on serpentinisation/melting.
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Effect of crustal thickness on serpentinisation/melting.
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Preliminary results- Underplating
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Presenter’s notes: Shown here is an example of the evolution of a rift with underplating from dikes. Top and bottom plots show degree
of serpentinization and magmatic crustal thickness over time. The middle plot shows the formation of a dike at each time step (in pink
color) and the resulting underplating and the thickness of the underplated melt over time (in green color). A remarkable result is that
we can find very highly thinned and hyperextended margins which are not floored by serpentinite, but rather by melt. Work continues
on implementing how the melt is distributed in space for the sill approximation.
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1. Key controls on margin formation.

Combined offshore/onshore experiments
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2.Interplay between continental
margin deformation and sedimentation.

i

Miguel Andres Martinez, PhD candidate



3.Interplay between margin formation,
offshore uplift and consequences for
sediment transport and accumulation.




Thank you!
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http://searchanddiscovery.com/documents/2016/30435perez-gussinye/part5.pdf



