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Abstract 

 

Exploitation of hydrocarbons from strata with evaporite paleokarst development can be challenging due to tremendous 

permeability variability as a result of disrupted bedding, irregular pore types, allochthonous and autochthonous sediment fills 

and the development of persistent fractures throughout. Porosity networks and permeability barriers linked to evaporite 

paleokarst are critical elements of major hydrocarbon accumulations, such as the Madison Formation of the Bighorn Basin. The 

extensive suprastratal deformation can create substantial permeability heterogeneity, directly juxtaposed to the dissolution zones 

themselves that commonly form low-flow baffles or barriers. Despite these important and widespread characteristics, no 

systematic treatment of this style of carbonate reservoir heterogeneity exists and as a result of the “vanished” nature of the key 

controlling lithofacies, these systems are commonly controversial and poorly understood. The Upper Mississippian Madison 

Group offers a superb, if not spectacular, exposure of laterally continuous evaporite paleokarst zones. Many studies have 

described solution-enhanced zones within the Madison. The focus of this study is the reservoir-heterogeneity scale issues 

associated with this evaporite removal system. Thus, we build upon the impressive regional syntheses available for this 

Mississippian platform and treat a limited number of key localities in Wyoming and Montana in some detail. Observations from 

these localities have led to a list of criteria for recognition of evaporite paleokarst that, while based on the Madison, are also 
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present in other evaporite paleokarst systems. We interpret the timing of the paleokarst system, including the two distinct styles 

of paleokarst: end Madison subaerial exposure and the intrastratal solution collapse. We relate this to overall paleogeography 

and tectonic elements within the Late Mississippian. Finally, we highlight important observations regarding reservoir 

architectural elements that have significant implications for hydrocarbon development, especially in the form of highly fractured 

strata above the evaporite removal zone. 
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Paleokarst – A Significant Reservoir Element 

2 
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Challenged Reserves – Devonian Grosmont 

Source: www.laricinaenergy.com 

>500 billion barrels of heavy crude within Grosmont 



Key general applications 

• Knowledge of paleotectonics and paleogeography are 

essential elements in characterization of paleokarst 

 

• Distinct criteria define evaporite-rich vs. epigenenic 

paleokarst systems 

 

• Paleokarst systems, especially over broad areas, are 

complex and can be the result of multiple geologic processes 



Paleokarst Classification by Unconformity Driver/Rank 

Kerans, RCRL 



2nd Order Supersequence - Paleokarst Characteristics 

Kerans, 1997 

Complex belts of karst subfacies that follow 
tectonic trends rather than pre-existing 

carbonate platform paleogeography 
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Modified from Gutschick and Sandberg (1983), Sonnenfeld (1996) 
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Stratigraphic zone of interest 

Sando (1972) – Little Tongue Member / 

 Lower Solution Zone 

Sonnenfeld (1996) – Sequence IV 



Madison Stratigraphy – Sonnenfeld, 1996 
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C. Montana Trough 

 



Bighorn Canyon – Localities of Interest 
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Barry’s Island Outcrop Locality – Measured Section 



Sequence IV dissolution stratigraphy 

52 m 



Paleokarst Stratigraphy – Barry’s Island Section 

A – Seq. III HST shallow subtidal  

B – basal thrust faults 

C1 

C2 

D – Mosaic breccia  

F – Fracture breccia  

– Clast and matrix-supported  

    limestone breccia  

– Matrix-supported dolomicrite and  

    matrix-supported gravity flows 

 



Basal evaporite-bearing cycles 
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Intrastratal deformation – lower collapse 



Evidence of evaporite removal 

Progressive evaporite removal 



C1 basal sediment infill 



Interpreted Outcrop Photo 
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Lenticular Doline with Multiple Breccia Fills 



Comparison (abbreviated) Between Epigenetic  

and Evaporite Paleokarst 

Feature Surface Epigenetic Evaporite 

Lateral continuity of 

breccia / cave body 

Breccia bodies vertically 

extensive with 

thickness/width ratio of 

1:1 to 10:1 

Breccia bodies extend for 

100s of km with 

thickness/ width ratio 

1:1000 

Stratigraphic position Follows aquifer 

boundaries, not 

lithostratigraphic units 

Strata-bound by position 

of former evaporite 

Lower contact Diffuse, complex, and 

dependent on exposure 

Sharp, little disruption 

below, chaotic within zone 

Remnant anhydrite Absent Present as slabs, clasts of 

anhydrite, or molds 

Lateral compressive 

structure 

Rare Common, esp. at base of 

stratiform breccia 



 

Increased Solution-Widened Fracture Intensity  

Related to Paleostructure 

Base Ranchester 

Limestone (MFS) 

Pennsylvanian 
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during Late Paleozoic  
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during Late Paleozoic  

t1 

t2 

Eldam, 2012 t1 > t2 



Ranchester - LiDAR 

Ranchester -  RTK-GPS 

Ranchester - GE-DEM drape 

SB.III Top – LiDAR 

Overlook locality 

Input data for structure contour model: 

-Terrestrial lidar 

-RTK-GPS 

-Aerial photo interpretation of contacts 

Data Acquisition 



Data Interrogation 
•lidar scan outcrop 

•GPS mapping 
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Structure Contour and Data Control - Top Seq. III (Miss.) 

*yellow line is lidar data; blue line is aerial photo interpretation 
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Structure Contour and Data Control - Top Ranchester (Penn.) 

*yellow line is lidar data; blue line is aerial photo interpretation 
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Isopach of Ranchester (Penn.) to Madison Seq. III (Miss.) 

Orange is thick (>100 m) 

Fold axis is thin (~40m) 

Mean measured section is 74 m 

Porcupine Anticline of the BCRA is a paleostructural high 



Paleostructure and solution-widened features 

Red dots are mapped solution-widened fractures (dot size  

scales—largest is 40 m wide) 



Ancestral Rockies Uplifts, Ridges or Highs – Maughan, 1993 
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Madison Paleokarst System 

RCRL Kerans, 2013 



Fremont Canyon: 
2nd Order Karst + evaporite dissolution + paleostructural high 

View to the west – Laramide-age homocline 
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Fremont Canyon Formations and Sequences 
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Combined paleokarst drivers 
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Paleokarst facies– 2nd order + evaporite + paleostructural 



LiDAR scanning of the top paleokarst surface 

LiDAR scan utilized to developed 

quantified mapping of paleokarst 

surface 

 

Outcrop morphology allows for 

areal statistics to be determined 



Paleokarst Topography: Combined Effects 
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Madison Paleokarst System 

RCRL Kerans, 2013 
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Paleokarst – paleogeography + evaporite + 2nd order 

High-relief karst pinnacles and towers 



Paleokarst – paleogeography + evaporite + 2nd order 
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Madison Paleokarst System 

RCRL Kerans, 2013 



Key general applications 

• Knowledge of paleotectonics and paleogeography are 

essential elements in characterization of paleokarst 

 

• Distinct criteria distinguish evaporite-rich vs. epigenenic 

paleokarst systems 

 

• Paleokarst systems, especially over broad areas, are 

complex and can be the result of multiple geologic processes 
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