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Abstract 

 
The Goldsmith Clear Fork field was discovered in 1946 and has produced over 300 million barrels of oil from a thick carbonate 
section dominated by anhydritic dolomite with lesser limestone. Reservoir quality is low to moderate with a mixed pore network 
of interparticle and moldic megapores along with intercrystalline nanopores and micropores. The AMOCO #234 Goldsmith core 
was selected as the type core to define the origin of dolonanopores and dolomicropores and their characteristics. In thin section 
these pores are seen occurring in patches of the matrix, in peloids and clasts, and in fossils. These occurrences are similar to 
some examples of micropores networks observed in limestones. As seen on the SEM using Ar-ion milled samples, the nano- and 
micropores occur between crystals of dolomite that are euhedral and generally range in size from <400 nanometers to 5 
micrometers. The crystals are poorly sorted relative to size. In general the pores are triangular in shape because they are 
positioned between euhedral crystals. The pores range from 20 nm to a few micrometers. Submicrometer diagenetic illite flakes 
commonly form in the pores further subdividing the pore. The nano-to microsized dolomite formed by replacement of matrix 
and grains and by precipitation into pore spaces. The resulting pore networks are quite varied. As an example, where the 
dolomite replaced former calcite microrhombic grains with associated micropores, the nano- and micropores mimic the former 
calcite micropore network. This is interpreted as a replacement process of microcrystalline rhombic calcite. In some fine 
peloidal dolopackstones, the peloids are replaced by a dense network of dolomite crystals with some triangular nanopores still 
present, while in the interpeloidal pores, some nano- to microdolomite crystals precipitated. The interpeloidal pores are small but 
appear to form a fair connected pore network. The porosities in the studied core are generally less than 15% and permeabilites 

mailto:bob.loucks@beg.utexas.edu


are generally less than 10 md with most values less than 1 md. The recognition of nano- and micropores is important because 
they can be a major contributor to total porosity, while adding little to permeability. They also may affect reservoir saturation in 
that the megapores may be saturated with hydrocarbon whereas the finer pores are filled with water. Therefore, the quantity of 
nano- and micropores must be taken into consideration when calculating flow rates and field-wide reserves. 
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Major Concept
 Recognition of nano- and micropores is 

important as these pores can be a major 

contributor to total porosity, while adding 

little to permeability.

 Affects reservoir saturation calculations in 

that the megapores may be saturated with 

hydrocarbon whereas the micropores are 

filled with water.

 Therefore, the quantity of nano- and 

micropores must be taken into consideration 

when calculating flow rates and field-wide 

reserves.
 

 
Presenter’s notes: Best way to understand unconventional resources is to look at systems. 



Objectives 

 Present the general depositional setting 

and associated lithofacies 
 

 Define Clear Fork nanopores and 

micropores in both limestones and 

dolostones 
 

 Provide origins for the three main types 

of dolomite-related nanopores and 

micropores 
 

 Review general reservoir quality 
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Location and Regional Setting 

 The Goldsmith field in on the interior 

of the Central Basin Platform 

San Simon Channel

Goldsmith fieldGoldsmith field 



Stratigraphy 

Ruppel (2002) 
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Core Description 
Amoco #234 GLDU  

 900 ft of secton 
 

 Transition icehouse 

to greenhouse 
 

 Numerous higher 

order cycles; both 

tidal-flat capped and 

subtidal capped 
 

 According to Ruppel 

(2002) Clear Fork is 

comprised of two 

composite sequences 
 

 Only the lower fifth of 

the section contains 

limestone; rest of 

section is dolostone 
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Depositional Environments 
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Depositional Environments 
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Depositional Environments 
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Pore Networks Composed 

of Nanopores and 

Micropores 



Micropores 

 Micropores occur in both limestones and dolostones 
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Mg-Allochem Transformation 

 Mg-calcite allochems stabilization produces micropores 
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6257 ft 

Micropores in Limestone 

 Micropores in this limestone are interpreted to be 

associated with the stabilization of Mg-calcite allochems 
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Origins of Micropores in Dolomite 

Three processes 
A B C 

Dolonano/micropores 

form by : 

 (A) Over-

dolomitization 

 (B) Contrasting 

precipitation/ 

replacement 

processes  

 (C) Transformation 

of Mg-calcite to 

microrhombic 

calcite and later 

dolomitization 
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 Dolomite crystals grow to a point where they have 

filled nearly all the intercrystalline pore space 



 Replacement 

versus 

precipitation 

processes 
 

 Grains are highly 

dolomitized with 

minor few 

nanopores left 
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Micropores in Dolomite (Type B) 
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Micropores in Dolomite (Type B) 
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 Dolomite crystals mimics original microrhombic calcite crystals. 
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 Replacement of former Mg-calcite microrhombic crystals 
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 OM nanopores in migrated solid bitumen 
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Reservoir Quality by Matrix Type 
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 Limestones tend to have higher porosities, but both 

limestones and dolostones have similar permeabilites 



Reservoir Quality by Matrix Type 
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Conclusions 
 

 Clear Fork reservoirs are a combination of nanopore, 

micropores, and megapores. 
 

 Dolomite-related nano/micropores form by: (1) 

“overdolomitization,” (2) contrasting 

precipitation/replacement processes, and (3) 

transformation of Mg-calcite to microrhombic calcite 

and later dolomitization. 
 

 

 Quantity of nano- and micropores must be taken into 

consideration when calculating flow rates and field-

wide reserves. 


