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Abstract

The Mid-Continent Mississippian age limestone is a valuable unconventional carbonate reservoir in Oklahoma and Kansas. Although over
14,000 vertical wells have been producing oil and gas from Mississippian age reservoirs for over 50 years, recent horizontal activity has
illustrated how crucial it is to understand the petrophysical and depositional characteristics associated with producing intervals. Petrophysical
analysis has been integrated with high resolution sequence stratigraphic analyses of core from North-Central Oklahoma to better understand the
distribution of reservoir facies in this unconventional carbonate reservoir. Horizontal porosity in the data set, ranges from 0.5-7%, although
porosity values may be as high as 20% locally. Correlative permeability ranges from 0.001 md to just over 1.0 md. SEM analysis shows the
pores are mostly oblong to oval, intercrystalline to vuggy, meso- (4 mm - 62.5 um) to nanopore (1 wum — 1 nm) size, while pore throat
measurements are consistently in the nanopore range. Acoustic response data show the inverse relationship with porosity in unconventional
carbonate mudrocks is consistent with previous work using Mesozoic to Cenozoic age conventional carbonates. However, the carbonate
mudrock data from the Mississippian show a significant shift in the median value that appears to be consistent with analysis from Neogene
carbonate mud samples. Detailed facies analysis from three cores in North-Central Oklahoma suggests deposition occurred on a regionally
pervasive, distally steepened carbonate ramp. The facies stack into shoaling upward packages of weakly calcareous mudstones to wackestones
at the base, overlain by progressively higher energy skeletal packstone to grainstone facies. A sequence stratigraphic hierarchy of shoaling
upward packages is observed in core and wireline logs at the third, fourth, and fifth order scales. Tying the correlation between the wireline log
signature and facies stacking patterns into the sequence stratigraphic framework provides a means for increasing the predictability of reservoir
quality units in the subsurface. Augmenting this data with the acoustic response, and characterization of the macro- to nanoscale pore
architecture, provides an example of how integrated studies can enhance predictability of key reservoir facies and producing intervals within
unconventional carbonate reservoirs.
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Mid-Continent “Mississippi Limestone”

Oil and Gas Production History
Production began in the early 1900’s

Reservoir intervals vary from limestone, or dolomite-rich intervals
to tripolitic, nodular and bedded chert intervals

Horizontal drilling has revitalized production, but highlighted the
need to better understand the reservoir architecture
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Predicting permeability

= =] 1l =
1. Pore architecture _1’f
= Thin section, SEM, FIB-SEM, CT §

_

2. Sequence Stratigraphy
= facies, diagenetic alterations

3. Acoustic Response
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Carbonate pore types

(Choquette and Pray, 1970)
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Porosity, pore size, and permeability
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Porosity: 19.7%
Permeability: 10751mD

Porosity: 19.3%
Permeability: 1.54mD

Porosity: 28%
Permeability: 0.06mD



Characterization of mudrock pore architecture

= Siliciclastic mudrock reservoir pore classification: Active discussion
= Pore descriptions: combine carbonate and siliciclastic features
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Characterizing the pore architecture

' Manual Polished Area | lon Mill Polished Area

8 -
W .
"-?. s .\.'_' &1 g

r

.
SR
Aj\. \

R e i < 3 R ';i"’ & | Foctmmn
mag HV |spot WD | det — 100 ym LLa s
11000 xI2000kVI 3.0 101 mm ETD




Characterizing the pore architecture
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Digital Image Analysis
Link to quantitative permeability assessment

¢

3-D Image Analysis
CT-Scans
Focused lon Beam — SEM imaging

2-D Image Analysis

Photomicrographs

Cube = 1,000,000 Oil
Molecules

15nm slices

= : 10nm resolution
Figure Thornton and Grammer 2012 .

FIB images Courtesy of EOG
Resources, Used with
permission from G.M. Grammer



Sonic velocity to predict permeability in
carbonates
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Predictable acoustic response
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Predictable acoustic response
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Quantitative permeability prediction

Artificial Neural Network

Multivariate Statistical Analysis
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Carbonate mudrock acoustic response
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Unconventional carbonate mudrock acoustic response

relationship to empirical equations
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Study area and core locations
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Thin section analysis:

Pore archltecture
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Pore Size
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Scanning Electron Microscope:
Pore architecture

. ‘Matrix’ surrounding pores

Pore filling clays

. Pore/void space
[I Pore filling calcite




SEM Photomicrographs

Pore Size
Classification

Loucks et al.
(2012)
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Pore size distribution and permeability
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Facies Characterization
Osage County
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Facies Characterization
Logan and Payne County
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Sequence Stratigraphic Framework
Depositional Variability
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Rationale for observed differences

* Different locations within the basin
* Potentially different time periods captured

* Different depositional environments relative to basin topography and
continental, siliciclastic influences




Porosity, permeability, and facies
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Data set results (Osage County)
Porosity, permeability, facies relationship
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High Resolution Sequence Stratigraphy
Predicting porosity and permeability
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Summary and Preliminary Conclusions

Facies preserved highlight how quickly depositional
environments can change across relatively short horizontal
distances

Similar fundamental sequence stratigraphic architecture

Wireline logs and high resolution sequence stratigraphic
analysis enhances predictability of high porosity and high
permeability intervals

Simple scatter plots and cross-plots of porosity and
permeability data are unlikely to reveal significant trends in
carbonate mudrocks

Pore architecture characterization can help explain deviations
to expected relationships in facies and petrophysical
properties

Acoustic response data indicate potential to enhance the
predictability of key petrophysical properties
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