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Abstract

In terms of its large size, the Red Sea is a unique contemporary analog for carbonate deposition in a marine rift setting. The Red Sea covers a
full 20° of latitude, which is sufficiently long to display pronounced climate differences, and the clear tropical waters support vigorous coral
reef growth and associated production of carbonate detritus. Six focus areas within the Red Sea, each covering 1600 sg. km, were selected to
illustrate and analyze the variability of reefal and other carbonates in a rift setting. Five of the focus areas are located on a north-south transect
along the sea’s western margin — (1) Gubal Straits (Egypt), (2) Shalatayn (Egypt), (3) Trinkitat (Sudan), (4) Dahlak (Eritrea), and (5) Halib
(Eritrea); and one is from the eastern margin — (6) Farasan Banks (Saudi Arabia).

Using Landsat imagery, water depth, and two marine facies classes “reefal frameworks” and “sediments” were mapped. These two classes were
lumped to define “carbonate bodies”, in turn analyzed for trends in orientation, as guided by local fault networks, and size-frequency
distribution. Fault lineaments, which were digitized from the literature, are shown to direct the orientation of carbonate bodies with areas
exceeding 5 km® Smaller bodies do not preferentially align with fault trends. Relationships between water depth and the occurrence of reefal
frameworks and sediments were explored for the six focus areas. No deterministic relationship was found. Used as an analog, the assembled
data from the contemporary Red Sea may provide insight into the orientation and scale of accumulation of carbonates in subsurface rift
settings.
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Rift basins provide many shallow-water sites for the establishment of carbonate platforms
Carbonate-dominated marine rifts are common in the geological record

Few well documented ancient examples where facies distribution can be shown to be controlled by

rift-related faulting (but see Burchette (1988), Cross et al. (1998) and Cross and Bosence (2008) for mid-Miocene onshore Gulf of
Suez rift; Dorobek (2008) for several Tertiary and Mesozoic examples)

Red Sea potentially represents a modern analog for rift marine carbonate sedimentation - Possible
insight into reservoir distribution
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The Database:

» Six focus areas, each 1,600 sq. km

e Satellite imagery, water depth maps, delineated
“carbonate bodies”, GIS

e Onshore fault lineaments digitized from literature

Aim:
e Use the Modern Red Sea to explore local and regional

controls on shallow-water carbonate facies geometry

* |llustrate patterns that could provide insight into the
geometry and scales of accumulation of carbonates in
subsurface analogs

Key Insights:

e Fault lineaments are closely related to the orientation of
carbonate bodies with areas >5 sqg. km

* Smaller bodies do not preferentially align with fault trends

e At Landsat-scale, water depth and the occurrence of reefal
frameworks and sediments are not systematically related

e At fine-scale, facies can better be used to constrain water
depth ... but with caveats
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Orientation of carbonate bodies
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Orientation of the carbonate bodies
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B Analysis of variance table

Body area <5sg. km Bodyarea>5sq.km

pvalue (n)
[1] Gubal 0.01(73)
[2] Shalatayn 0.00 (172)
[3] Trinkitat 0.34 (271)
[4] Dahlak  0.00 (58)
[5] Halib 0.00(33)
[6] Farasan  0.00 (64)

pvalue (n)
0.57 (11)
0.85(11)
0.89 (7)
0.00(7)
0.31(9)
0.52 (10)

3505sq. km

T
40°0'0°E
o aokm

TN

\Buffer |

Faults digitized from the literature
—— Khalil and McClay (2002)
~——— Bottetal (1992)

Carbone et al. (1998)
Crane and Bonatti {1987)

Dahlak s
(Eritrea) >

Trend of the recent Red Sea
E;eading axis (130° - 140°)
ne and Bonatti (1987)

Bathymetry

Iom
-2,700 m

Not significantly different at 95% Cl (populations have equal means)
Significantly different at 95% Cl (populations have unequal means)



Why is the orientation of carbonate bodies related to rift tectonics?
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Salt-diapir platforms (sosence ‘05)
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Indirect tectonic influence
on environment
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Facies-water depth relationships
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Facies-water depth relationships — at higher resolution

Landsat 30 m

Ras Qisbah
(KSA)

Quickbird 2.5 m

Trinkitat
(Sudan)

Farasan
(Saudi)

Dahlak
(Eritrea)

[4]

Halib 1km
(Eritrea)
Klm’!ed bin Sultan
_Cﬁﬁi) Living Oceans

Foundation



Lol
|
.\

> & Khaled bin Sultan

&) Living Oceans
@ e 8 “

Foundation



5km




® Acoustic depth sounding (>2 million)
® Seafloor observation (500)
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Facies-water depth relationships — at higher resolution
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Conclusions

e Fault lineaments are closely related to the orientation of carbonate bodies with areas >5
sg. km.

* Smaller bodies do not preferentially align with fault trends.
 Faults and diapirism relevant to predictability in orientation, as is rift influence on winds.

* Facies do display water-depth-dependent attributes; but relationship varies with depth
(and palaeo-water depth !).

e Used as an analog, these data may provide insight into the orientation and scale of
accumulation of carbonates in subsurface marine rifts
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