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Abstract

Scaling relationships developed from modern fluvial deposits provide useful guidance for interpretation of the stratigraphic record. At the
system level, fluvial channel depth and the related thicknesses of channel-belt sand bodies scale to contributing drainage area, whereas, at the
local to subregional level, characteristic width-thickness ratios exist for muddy abandoned channel fills (10-30:1) and laterally amalgamated
channel-belt sand bodies (70-300:1). Moreover, net deposition as the river goes through its backwater reach, and feels the effects of sea level,
results in significantly less lateral migration before avulsion: although muddy channel-fill dimensions may not change, channel-belt width-to-
thickness ratios are significantly less (20-50:1), and sand bodies are encased in muddy flood-basin or delta-plain strata. These and other
relationships provide insight into the paleogeographic significance and scale of fluvial deposits in the Early Cretaceous Mannville Group,
Alberta foreland. At the system level, thicknesses of Mannville point-bar sand bodies commonly exceed 30 m, which suggests a potential
drainage area exceeding that of the modern Mississippi. This view is consistent with detrital-zircon signatures of a source terrain that stretched
from the Appalachians in the SE US to the Western Cordillera. These two observations converge to indicate that Mannville fluvial-deltaic
deposits record the continental-scale river of that time. At the local to subregional level, the well-imaged Lower Mannville McMurray
Formation in Athabasca displays channel-fill dimensions consistent with those from modern rivers and sand body width-to-thickness ratios
typical of amalgamated channel belts within the upper limits of, or above, the backwater reach. Backwater lengths in large river systems with
deep, low-gradient channels can exceed 500 km, which would suggest contemporaneous McMurray shorelines would have been very far to the
north of the type area. It would be rare to see tidal effects all the way through the backwater reach of any river, and very unlikely to see
brackish conditions recorded this far upstream. Yet, sedimentological and ichnofacies characteristics in these deposits have historically been,
and still are in many cases, interpreted to record brackish and/or tidal influences. Observations of scaling relationships for channel deposits
therefore provide alternative interpretations of McMurray strata that are guiding ongoing investigations.
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SCALING IN FLUVIAL SYSTEMS

Types of Valleys — A Source-to-Sink View
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SCALING IN FLUVIAL SYSTEMS

Scaling in Modern Fluvial Systems
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SCALING IN FLUVIAL SYSTEMS

Scaling of Paleovalleys, Channel Belts, and Channel Fills
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Summary of 1-Order Source-to-Sink Scaling Relations
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Scaling relationships between drainage-basin area, length of fluvial system, thickness of fluvial sand bodies,
length of basin-floor fans, and basin-floor fan area

Drainage basin

Fluvial system

Fluvial sand body

Backwater

Fan Length | Fan Width Fan Area
area (km2) length (km) thickness (m) Length (km) (km) (km) (km?)
Small 10,000 75-100 5-7 10-30 <25 25-50 <1000
Moderate 100,000 750-1000 10-15 50-100 100-200 100-200+ 100,000
Large 1,000,000+ 2000-4000 25+ 300-500+ 500-1000 | 500-1000+ | 10,000,000
after Somme et al. (2009) and Blum et al. (2013)




SCALING IN FLUVIAL SYSTEMS
Lower Cretaceous Mannville Group — Alberta Foreland Basin
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SCALING IN FLUVIAL SYSTEMS

The McMurray Deposited by a Continental-Scale River?

Model for McMurray Formation at Syncrude
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DZ Results — Lower Cretaceous of the Alberta Foreland Basin
North American DZ Source Terranes - Mannville Group DZ Samples

Snhot ,-, Nd"tﬁ\ii} e M TR
- 35 T ries 7 "‘ /7
K 7:' L2 . - Hudsons
. S o iz, '}' L '
(5 7

Bay

;
3
P
A

after Dici%inson and‘Gehrels (2009




SCALING IN FLUVIAL SYSTEMS
DZ Signature for the McMurray Formation
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SCALING IN FLUVIAL SYSTEMS

Early Cretacous Paleodrainage Reconstruction from DZs
Albian Clearwater-Grand Rapids Drainage
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SCALING IN FLUVIAL SYSTEMS
The McMurray as a Mixed Bedrock-Alluvial Valley System?
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Bedrock Valleys — Inherently Degradational over >>10° yrs

Original McMurray Interpretation of Cant and Abrahamson 1996

7-21-71-9W4 10-15-71-9W4 717-71-8W4 10-23-71-8W4 7-20-71-TW4 10-15-71-7W4 10-17-71-6W4 515-71-6W4 6-20-71-5W4 12-16-71-5W4 11-23-71-5W4 12-18-71-4w4

§-21-71-4w4

L™ F |- r e S~ E ™ 3| F |- | faon

aggradational stacking of channel belt sandbodies

Alternative Degradational Bedrock-Valley Model

aggradational stacking of distributary channel-belt sandbodies
£ /

E:| ———— datum 1 ----- \\
- B T L L s e e L S DAL R RS L i SN S P :
0o

J. .. g < /WS

degradational stacking of amalgamated channel belt sandbodies




SCALING IN FLUVIAL SYSTEMS
McMurray as an Estuarine and Tidally-Influenced Fluvial Deposit?
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SCALING IN FLUVIAL SYSTEMS
Conflicting Observations and the “McMurray Conundrum”
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SCALING IN FLUVIAL SYSTEMS

The Backwater Concept

MIXED BEDROCK-ALLUVIAL VALLEY COASTAL-PLAIN VALLEY

| River
: Mouth
Flood-Plain [
- Long Profile | Brackish
““““““ Tidal Water Sea
******* |  Effects Level
A v
after Li et al. (2006) Long Profile Bac;;v;t;; — I;f—f : -t _____
ects

Backwater Length Scales

10,000
—_ Amazon-scale (6*10°km?2)
E onlap within
S \_ Mississippi-scale coastal-plain
2 1000 s (3*10%km?)
> Niger-scale I
g S / (1*106km?2) A
S 100 .
3 Tha.
_.Clj o h =60 m 7\ ............................
© o ot s e = 30 M ey
E 10 G hf =20m Colorado-scale
S f (1*105km?)
® mmmt— =12 m
M i ] mmme—t=tm Eel-scale (1*10%km?)
I L] T LI L L ll L} T Illlll' L} L} IIIIIII T L} T 1T rrri
0.00001 0.0001 0.001 0.01 0.1

after Blum et al. (2013) Channel Slope, S (m/m)
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Backwater Effects on Channel-Belt Morphology and Scales
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Mannville Group Channel-Belt Sand Bodies and Channel Fills

~ from Imperial Oil Alberta Energy Board Report (2013)
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Systematic Changes in Channel- Belt Morphology and Soales
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-SUMMARY

From detrital zircons-and point-bar scaling reIatlonshlps the Aptian McMurray
Formation records a contmental-scale drainage, the MISSISSIppI of its time:
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 This |nterpretat|on jsiinconsistent W|th scahng relatlonshlps from seismic
data, which place the McMurray too far upstream to be significantly impacted
by tidal processes,.and way too far upstream for brackish influence.





