Pore Structure of Opal-CT and Quartz Phase Porcelanites, Monterey Formation, California*

Tesfalidet G. Kassa¹ and Richard J. Behl²

Search and Discovery Article #51113 (2015)**
Posted June 30, 2015

*Adapted from oral presentation given at Pacific Section AAPG, SEG and SEPM Joint Technical Conference, Oxnard, California, May 3-5, 2015

¹California State University, Long Beach, CA (tgmae2001@yahoo.com)

Abstract

We identify and quantify significant differences in pore size, shape, and complexity between opal-CT and quartz-phase porcelanites, but also between rocks of the same silica phase with distinct silica content or sedimentary fabric using secondary and backscattered electron scanning electron microscopy of argon-ion polished or focused-ion beams' cut surfaces. Porcelanites are important reservoir rocks that demonstrate great differences in producability despite similar bulk physical characteristics. Previous studies have measured an order-of-magnitude lower permeability in opal-CT compared with quartz phase porcelanites, presumably due to difference in pore-throat size. In quartz-phase, we identify three porosity microfabrics. Silica-rich porcelanite (> 80% silica) has patchy/speckled and laminated microfabrics. The first displays low porosity matrix and high porosity lenticular patches. We measured 17-20% bulk porosity of (pore-diameter 0.05-3.00 microns). In contrast, a laminated silica-rich porcelanite (26% bulk porosity) has ~100 µm-thick layers that alternate between highly porous (35% and pore size 0.01-3.7 microns) with good interconnectivity and low porosity layers (19%) with isolated pores (0.01-0.7 microns). The massive silica-poor porcelanites have porosity of 10% with (0.02- 0.03 microns) and poor connectivity. Our range of bulk porosities for quartz-phase porcelanite (10-26%) measured by microanalysis is similar to that determined by standard methods. Opal-CT porcelanite also reveals three different microfabrics: two in high-silica (> 75%) and one low silica (< 60%). One high-silica porcelanite with 30% bulk porosity has a pervasive lepispheric fabric in which lepispheric cores and interlepisphere porosity each comprise $\sim 1/2$ of the total porosity (3-138 nm size). Lepisphere cores are formed of highly porous granular opal-CT, but this porosity is mostly isolated by a virtually pore-free, surrounding impermeable mantle. The larger and better-connected interlepisphere pores are formed by larger, crosscutting and radiating bladed crystals. The second silica-rich, opal-CT porcelanite is characterized by extraordinarily large and connected vuggy pores with bulk porosity of 60%. This unique pore structure is associated with silica mobility during stalled burial or tectonic uplift of the opal-CT to quartz transition zone. The last fabric is in silica-poor opal-CT porcelanite that has 18% bulk porosity with poorly connected pores (0.001-0.09 microns).

References Cited

Chaika, C., and J. Dvorkin, 2000, Porosity Reduction during Diagenesis of Diatomaceous Rocks[:] AAPG Bulletin, v. 84/8, p. 1173-1184.

^{**}Datapages©2015 Serial rights given by author. For all other rights contact author directly.

²California State University, Long Beach, CA

Isaacs, C.M., 1980, Diagenesis in the Monterey Formation Examined Laterally along the Coast near Santa Barbara, California: USGS Open-File Report 80-606, 343 p.

Loucks, R.G., R.M. Reed, S.C. Ruppel, and U. Hammes, 2012, Spectrum of Pore Types and Networks in Mudrocks and a Descriptive Classification for Matrix Related Mudrock Pores: AAPG Bulletin, v. 96/6, p. 1071–1098.

Schwalbach, J.R., S.A. Gordon, C.P. O'Brien, D.F. Lockman, W.C. Benmore, and C.A. Huggins, 2007, Reservoir Characterization of Monterey Formation Siliceous Shales: Tools and Applications, *in* L. Knauer (ed.), Contributions to the Geology of the San Joaquin Basin, California: Pacific Section, AAPG Miscellaneous Publication 48, p. 119-146.

Pore structures of opal-CT and quartz phase porcelanites, Monterey Formation, California

Tesfalidet Kassa Richard Behl

MARS Project
Department of Geological Sciences Long Beach
California State University

Objectives and Hypothesis

Objectives

- Characterize the shape, size and distribution of pores in porcelanites of different silica phases and compositions
- Assess % of porosity that is isolated and ineffective
- Develop best petrographic methods for high-resolution, high-quality imaging

Hypothesis

- Variable of permeability between silica phases indicated by mercury injection capillary pressure may be due:
 - Pore-throat size distribution (Schwalbach et al., 2007)
 - The pore-structure (size, shape and connectivity)

Materials and Methodology

- Silica phase and mineralogy
 - X-ray diffraction (XRD)
- Chemical composition
 - Energy Dispersive X-Ray Spectroscopy (EDS)
 - X-Ray Fluorescence Spectroscopy (XRF)
- Imaging
 - Scanning Electron Microscope (SEM)
 - Secondary Electron Imaging
 - ▼ Backscattered Electron Imaging
- Cross-section polishing
 - MultiBeam Focused Ion Beam micro milling (FIB-SEM)
 - Cross Section Polisher-Argon Ion milling (CP)
- Image processing and analysis
 - ImageJ and Photoshop

Surface Preparation Assessment

 Traditional broken surface SEM poor for quantitative analysis

5 μm

Surface Preparation Assessment Focused Ion Beam (FIB) System

- A Focused Ion Beam (FIB) System:
 - Good data for specific area
 - Curtain effect due to uneven topography & density variation
 - Small area without spatial context

JIB-4500 Multi-Beam FIB-SEM FEI

Quanta 3D FEG Dual-Beam FIB-SEM

100 nm

500 nm

Cross-section Polisher

- An argon ion mill cross-section polisher
 - Large (mm-scale) representative x-section free from artifacts and distortion providing good spatial context
 JEOL CP

500 μm

3 μm

Types of porosity

Porosity microstructure varies with lithology

- Opal-CT phase porcelanites
 - Silica-rich opal-CT porcelanite (Lepispheric with three layers)
 - Transition-zone silica-rich opal-CT porcelanite
 - Silica-poor opal-CT porcelanite
- Quartz phase porcelanites
 - Silica-rich quartz porcelanite (laminated)
 - × Highly porous and interconnected
 - Low porosity with poor connectivity
 - Silica-rich quartz porcelanite
 - × Patchy to indistinct laminations of detritus
 - Heterogeneous microstructure and porosity
 - Silica-poor quartz porcelanite
 - Moderate porosity with poor connectivity

Types of porosity

Microstructure porosity by lithology

Opal-CT Silica-rich

Opal-CT Silica-poor

Opal-CT Silica-rich Transition-zone

Quartz Silica-rich

Ouartz Silica-rich

Quartz Silica-poor

We recognized two types of pore size:

Nanopores ≤ 1 nm and ≤ 1 μ m

Micropores $\leq 1 \, \mu \text{m} \text{ and } \leq 62.5 \, \mu \text{m}$

Loucks et al. (2012) classification is used in this study.

Opal-CT Porcelanite a. Silica-rich

Lepisheres with three distinct layers of pore structure

Mantle: Impermeable layer isolating the core

Interlepisphere porosity

- Very porous, nanopores
- Bladed and elongated

500 nm

500 nm

Pore Area %

AR-Aspect Ratio

Roundness

25.19 1.53

0.65

Lepisphere core porosity

- Highly porous, nanopores
- Granular and connected, but...almost completely isolated

500 nm

500 nm

Pore Area % 34.38

AR-Aspect Ratio

Roundness

1.49

0.66

Pore distribution

Interlepisphere

Core of the lepisphere

Lepisphere pore structure

- Consists of lepispheres with three layers
 - Core: highly porous and connected; nanopores (3-280 nm).
 - Mantle: virtually impermeable
 - **▼** Resulting in isolation of cores—ineffective porosity.
 - Interlepisphere: Very porous; nanopores (10-440 nm)

1. b. Silica-poor opal-CT

- Nanopores (3-180 nm)
- Low porosity, small size with poor connectivity

1 µm

Pore distribution

Silica-poor opal-CT porcelanite

Pore Area % 18.82

AR-Aspect Ratio
1.48

Roundness 0.67

1. c. Transition-zone opal-CT

 Porcelanite with porosity as high as common diatomites (~65%) ~

- o Large, interconnected vuggy pores.
 - * Associated with <u>dissolution</u> related to late quartz chert formation at cessation of burial

2. Quartz phase porcelanites

2. a Silica-rich (Laminated)

- Laminated bed: ~100 μm-thick laminations
- Laminations are defined by marked difference in porosity.
- Heterogeneous with layered porosity
 - Backscattered image of epoxy impregnated porcelanite

 $400 \, \mu m$ 20 μm

SEM image

 Low porosity with less interconnection

Highly porous and interconnected

 Low porosity with less interconnection

Highly porous and interconnected

 $20\;\mu m$

10 μm

An argon ion mill cross-section polished

• Extremely large and highly connected pores (Micropores)

Pore distribution

Pore Area % AR-Aspect Ratio Roundness 28.50 3.00 0.33

Low porosity with less interconnection

20 μm

- Small pores- nanopores (3-600 nm)
- Low porosity and poor interconnection

Pore distribution

Pore Area %

AR-Aspect Ratio

Roundness

8.89

1.526

0.655

- Large pores nanopores to micropores
- Moderate porosity and poor interconnection

 $1 \mu m$

Pore distribution

1 μm

AR-Aspect Ratio

Roundness

24.82

Pore Area %

1.781

0.562

- > 80% Silica and bulk porosity 19.86%
- Heterogeneous porosity between laminations
- Relatively consistent porosity along laminations that differ by being:
 - Highly porous with well interconnected Micropores
 - Low to moderately porous with irregular distribution of isolated Micro to nanopores (3-2300 nm)

1 µm

1 μm

3 µm

2. b. Silica-rich quartz phase (Massive)

- High silica > 80%
- Massive beds
- Microstructure
 - Patchy to indistinct laminations of detritus
 - Heterogeneous microstructure and porosity
 - Micropores with some authigenic clays
 - Nanopores with some primary and authigenic clay
 - Poor connectivity

Silica-rich (Massive)

Patchy to indistinct laminations of detritus

Secondary electron image

300 μm

Silica-rich (Massive)

 Heterogeneous microstructure and porosity

Silica-rich (Massive)

Nanopores (poor connectivity)
Some primary and authigenic clays
Detrital rich patches

Micropores (poor connectivity) Some authigenic clays

1 µm

1 μm

2. c. Silica-poor quartz phase

Moderate porosity and poor connectivity

1 μm

Silica-poor quartz-phase

Moderate porosity and poor connectivity

1 μm

1 μm

Pore distribution

Pore Area % AR-Aspect Ratio Roundness 21.62 1.32 0.76

Porosity Results from Previous Studies

1. Isaacs, 1980

2. Schwalbach et al., 2007

Quartz porosity 9-22 %

Quartz porosity 15-30%

	of quartz formation and porosity reduction in siliceous rocks
from the siliceous	member, Gato to Black Canyons. (Excludes samples with detrital
contents >50%; Ø =	samples with both opal-CT and diagenetic quartz.)

	Typical Porosity (%)	Grain Density (g/cc)	Permeability (air, md)	Pore-throat diameter (microns)	Oil Saturation (%)
Opal CT	25-40	2.25-2.35	0.01 – 0.1' s	0.01 – 0.1	0 - 30
Quartz	15-30	2.55-2.65	0.1 – 1.0's	0.1 – 1.0	30 - 60

Typical reservoir parameters of opal CT and quartz porcelanites.

3. Chaika and Dvorkin, 2000

Quartz porosity 12-26%

THIS STUDY

Bulk Porosity 9-26%; Locally to 35%

Summary: Opal-CT

- Opal-CT phase porcelanites display three types of microstructure porosity
 - o High-silica opal-CT porcelanite:
 - Consists of lepispheres with three layers
 - Core: highly porous and connected
 - Mantle: virtually impermeable
 - Resulting in isolation of cores—ineffective porosity.
 - Interlepisphere: very porous, bladed, nanopore and connected.
 - O Low-silica opal-CT porcelanite:
 - x Low porosity, nanopore, and poor connectivity
 - Transition-zone silica opal-CT porcelanite:
 - Extremely porous, with large connected, vuggy pores
 - **Micropore**

Summary: Quartz phase

- 2. Quartz phase porcelanites display the following microstructure porosity
 - Silica-rich quartz porcelanite- Laminated
 - ▼ Highly porous and interconnected micropores
 - Low porosity of poor connectivity with nanopores to micropores size
 - Silica-rich quartz porcelanite
 - **Massive beds**
 - Patchy to indistinct laminations of detritus
 - Heterogeneous microstructure and porosity
 - Micropores with some authigenic clays
 - Nanopores with some primary and authigenic clay
 - × Poor connectivity
 - Silica-poor quartz porcelanite
 - Moderate porosity
 - × Poor connectivity

Acknowledgments

- University of Southern California
 - CEMMA Center of Electron Microscopy and Microanalysis
- o UC Irvine
- Boeing Corporation
- MARS Project affiliates for support of this project

Thank you

