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Abstract

The current economic conditions have challenged producers to find methods to lower costs and improve production. While incremental
improvements in efficiency are possible, the current 50% reduction in oil prices means we need significant changes to stay competitive.
Wettability has a significant effect on hydrocarbon recovery and offers a basis to substantially improve well performance. Each reservoir has
a wettability state that leads to maximum recovery, but the initial wettability of a reservoir is usually not optimal. Traditionally, we have used
surfactants and chemical agents to try to optimize wettability and recovery, but this process is expensive and does not always produce the
desired results. This talk will outline recent advances in the science of wettability, as well as a practical methodology to realize the goal of
increasing well recovery in Eagle Ford reservoirs.

In unconventional reservoirs, the opportunity to increase initial flow rates and extend decline curves is an attractive goal. We can optimize
wettability by changing the water chemistry of well fluids during hydraulic fracturing and completions in unconventional targets. The
technique has several advantages including substantially lower costs, ease of application and lower probability of negative outcomes. Recent
studies have shown that rather than fresh water formulations, brackish water generates better well recovery. Not only does the use of the
correct brackish water increase recovery but also the costs associated with fresh water use can be avoided.

A successful approach to wettability alteration requires several key steps: screening the formation to identify current wettability, simple
laboratory tests to evaluate the in-creased recovery potential, economic evaluations to estimate costs and benefits, and finally, well-
constrained geochemical models to help correctly design the wettability-modifying fluids. While some current assumptions will be refined as
we become more knowledgeable, the basic idea, that we can alter wettability with water chemistry to optimize recovery seems well justified.
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Wettability alteration in the Eagle Ford:
how to design drilling fluids to improve
recovery 1n shale plays.
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What I learned so far

* The Eagle Ford 1s a technological play at this point.
It will not be a very active play at $50.

* Only $30% or less of frack fluid comes back.

* Marl is the source and storage unit.

* Limestone/marl geometry is important.

* We are talking about refinements to improve recovery
(better locations, spacing, completions, etc).

e The Alamo 1s smaller than in the movie.
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Outline

* Take Home.

* Why use this technique?
* What 1s this technique?

* Science and Engineering.

* Practical Aspects.
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Take Home Message

* Typical Oilfield Production

Typical Decline Curve for Oil Field Production

Primary Production
Reservoir Drive

—_

=2

e

/M

N’

= ;

. Secondary Production

g Waterflood

3

o

St

A

= Tertiary Production

O Enhanced Oil Recovery
Time

© ESal

Engineered Salinity




Take Home Message

* Wettability Alteration can be employed at any stage.
* Can be deployed during D&C (unconventional).

Typical Decline Curve for Oil Field Production
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Testing the Shale Boom

The recent surge in U.S. oil production may slow with oil prices near $75 a barrel, according
to Investment Technology Group Inc. At least 413,000 barrels a day comes from regions that
are estimated to lose money at that price.
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Why do we care about wettability?

* In petroleum reservoirs wettability 1s the tendency of oil to
adhere to the reservoir rock surfaces limiting oil movement
and recovery.

* Wettability is recognized as a major control on oil mobility and
amount of recovery.

* Normally we try to improve wettability by adding surfactants
(lower interfacial tension) to increase recovery.
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Observations of Wettability

il, at pH of 4 in 0.01 M NaCl
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Wettability Modification in Conventional
Reservoirs

* BP — Clare Ridge project
* Recent Papers:
— Mahani et al. 2015 (Shell) — carbonate mechanism, field results.

— Ayirala and Yousef 2014 (Aramco)— review of performance and
guidelines for projects.

— Brady et al. 2013 (Sandia) — mechanisms and modeling.

— Mwangi et al. 2013 (LSU)— methods and experiments.
— Dang et al. 2013 (SPE 166447) — modeling low sal.
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Why Alter Wettability by Salinity?

* No Change in Normal Operations.

* Potential Increase in Recovery 1s High.
* Costi1s Low.

* Works 1n Clastic and Carbonate.

* Increase Reserves.

* No Environmental Impact.
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Wettability

* Reservoir wettability 1s the equilibrium between water, rock and oil.

Wettability is major control on recovery.
*  “Hydrocarbon-wet systems retard hydrocarbon mobility”.

o “Water-wet systems promote hydrocarbon mobility”.
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Water Films?

Modified Flotation Test shows importance of water films

Age rock in 3ml of oil (decane) for 48 hours, stir every 12 hours.
Add brine to oil-rock mixture.

Stir and allow 24 hours.

Decant, dry, and weight fractions.
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Water Films?

e  Modified Flotation Test

* Allows rapid investigations in wide range of rock types
* Age 0.2 grams of rock in brine for 48 hours.
* Decant brine.
* Age rock in 3ml of o1l (decane) for 48 hours, stir every 12 hours.
* Add brine to oil-rock mixture.
e Stir and allow 24 hours.
* Decant, dry, and weight fractions.

Age rock in brine ~ Decant brine Age rock in oil Add brine
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Lab Tests - Modified Floatation

Initial separation
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How do we link wettability to salinity?

* Wettability 1s the equilibrium between water, rock and oil.

* Wettability 1s dependent on the balance of forces between
the oil-water and water-rock interfaces.

* Change 1n water chemistry changes the balance.

* Forces (pressure) between surface with a water film and
oil are composed of
— 1 — electrostatic (attractive or repulsive),
— 2 —van der Waals (attractive),

— 3 — structural or hydration (repulsive below 3-4 nm).
Hirasaki, 1991
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Wettability Models

* Model of aqueous, oil and surface reactions.

* Double layer models assume surfaces are coated with
water and electrostatic forces are dominant.
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What scale are we talking about?
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Application to Eagle Ford

* Evidence from Bakken, Milk River and Wolfcamp that
current fluids are not formulated to optimize wettability.

e Instead of fresh water formulations, brackish water
formulations may improve production.

— Water source costs are lower

* May be able to use geophysical logs (FMI) to determine in-
situ wettability.
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ESal™ Work Flow

* Evaluation (1s my field a good candidate?)

— Screening — Generate Field Score

» empirical model generates quantitative score based on field, oil, water and rock
properties
» preliminary water source assessment

— Scoping — Economic Assessment of Projects
» expense/profit modeling (modified Kinder-Morgan)
* multiple economic evaluations and scenarios

* Experiments and Models

— Wettability Measurements
 rapid scan to find optimum chemistry

— Modeling to assess other fluid-fluid-rock interactions

— Design injection fluid chemistry for optimum wettability
* Deployment

— Select water source

— Generate water treatment specifications

— Install equipment
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Why Use This Technique?

* No Change in Normal Operations.
* Potential Increase in Recovery 1s High.
* Costi1s Low.

* Works 1n Clastic and Carbonate.
* Increase Reserves.

* No Environmental Impact.
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Questions?

/@’ ESal

Engineered Salinity




