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Abstract 

 

The mechanical and physical properties of reservoir rocks are affected by the nature of the fluids saturating their pore space. 

Water flooding is a commonly adopted practice for enhanced oil recovery; however, saturating the reservoir with water can 

result in a reduction in rock strength (i.e., water weakening), leading to enhanced compaction which in turn can impact reservoir 

productivity and management. This study is concerned with the laboratory measurement of mechanical, elastic and fluid 

transport properties of samples of synthetic limestones with the aim of investigating the mechanisms involved in water 

weakening. Blocks of synthetic limestone were fabricated using the Calcite In situ Precipitation System (CIPS), a proprietary 

mineral cementation grouting technology (Lithic Technology Pty Ltd), and sub-samples from these were experimentally tested 

to assess the sensitivity of their mechanical and elastic properties to water saturation. To this end, high pressure geomechanical 

tests were conducted to characterize the behaviour of the samples under dry and water-saturated conditions while monitoring 

elastic wave velocities (compressional and shear waves) at ultrasonic frequencies. Three types of geomechanical tests were 

performed covering the brittle to ductile range of rock responses: i) unconfined compressive strength (UCS); ii) multistage 

triaxial (MTXL); and iii) hydrostatic (isotropic) compaction. The saturated hydrostatic compaction and MTXL tests were run 

with a pore pressure of 1MPa and maintaining the same effective stresses as used for the dry tests. The laboratory 

geomechanical tests were complemented by a series of petrophysical and microstructural analyses aimed at characterizing the 

porosity, permeability, pore and grain size distributions of the rock samples and track their evolution as functions of the applied 

stress. Experimental results show that, in all tested stress configurations, water-saturated CIPS-cemented samples are weaker 
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and more compliant than those with empty pore spaces (i.e., dry); therefore the mechanical and elastic properties of the CIPS 

calcite cement are affected by the presence of water. The results provide new insights into the micromechanical mechanisms 

leading to water weakening, strain localization and failure in high porosity carbonate rocks as well as links between their elastic 

wave velocities, water saturation and degree of deformation. 
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• Mechanical properties of reservoir 
rocks are affected by the nature of 
the fluids saturating their pore 
space; 
 

• Water flooding is a commonly 
adopted practice for enhanced oil 
recovery but can result in a 
reduction of strength  water 
weakening. 

INTRO 

Nagel, 2001 



• Increase in rock compressibility; 
• Reduction in matrix permeability; 
• Increased reservoir compaction 

and sea floor subsidence;  
• Reduced well bore stability; 
• Increased casing failures 
 

Consequences of water weakening 

Nagel, 2001 

63km of new pipeline laid during Ekofisk II 
redevelopment to replace sections inside the 
subsidence bowl 

See also presentation by Clennell et al., Wed 16:05 room 211 
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CIPS porosity/permeability 
Gas porosity:  26.95 % ±1.06 

Gas permeability: 8 ± 1.9D 



CIPS porosity/permeability 
Gas porosity:  26.95 % ±1.06 

Gas permeability: 8 ± 1.9D 

Hg porosity:  27.26 ±1.71 



Geomechanical testing 
Tests repeated under 
dry and saturated 
conditions 



Results 



CIPS mechanical characterization 
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Permeability evolution 
Water permeability 
 
Steady state method at 
increasing stress levels 
 
Note the difference in k 
reduction at the same stress for 
different stress configurations 
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Microstructure: isotropic compaction 
Porosity: 26.7 % // Gas k: 8D Porosity: 18.6 % // Gas k: 0.17D 



Microstructure: isotropic compaction 
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Pervasive grain crushing and pore collapse 

Before After 



Microstructure: triaxial test 
Porosity: 26.7 % // Gas k: 8D Porosity: 25 % // Gas k: 2.3D 



Microstructure: triaxial test 
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Localised compaction bands 

Before After 
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Mechanical summary 
Shear enhanced 
compaction 

Compaction 
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Weakening 
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Weakening 

Baud et al., 2009 
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λ = 0.8 Majella limestone (φ = 30%) 
 
λ = 0.84 Saint Maxim Limestone (φ = 36%) 
 
λ = 0.89 CIPS (φ = 26%) 



Synthetic porous carbonate rock fabricated 
 

Summary and conclusions 
 Consistent microstructure and petrophysical 

properties 
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Pore and grain size evolution as a function of 
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Ultrasonic velocities measured as a function 
of stress and saturation 

Summary and conclusions 
 

Ultrasonic velocities track the onset of 
pervasive cataclasis 

Dynamic bulk modulus smaller than 
theoretical prediction 

Pore and grain size evolution as a function of 
stress configuration 
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