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Abstract

The thermal state of the basin is fundamental for petroleum exploration. The classical assumption is that in a sedimentary basin heat is
transferred through conduction. Yet reservoirs are by nature zones of high permeability in between barriers of low permeability. Such
conditions can also trigger a different mode of heat transfer through convection, leading to significant difference in the temperature regime. As
such fluid convection cells greatly modify the geometry of the isotherms and their transient nature makes them a complicated phenomenon to
identify from temperature logs only. Indications for fluid convection can often be found in areas where thick units of high permeability are
encountered such as the massive pre-salt reservoirs in Brazil. The Western Australian Geothermal Centre of Excellence (WAGCoE, 2008-
2011) focused some its research on the role of convection in the Perth Basin and we are presenting here the methodology followed as well as
some results which highlight the impact of basin convection for the petroleum industry.

Large scale models (basin scale) were constructed to study the existence of convection cells and constrain the parameter space for all values
required to populate the most realistic 3D model. The numerical results from hydrothermal simulations at that scale were then used to generate
boundary conditions at the lower scale (Perth metropolitan) and numerous models were run to understand the sensitivity of the main parameters
identified in order to account for the large uncertainty around the geological data. Results show that convection can easily occur in various
locations within the Perth Basin and that convective patterns create significant temperature changes compared to conductive scenarios.
Convection cells are strongly pinned by the geological faults and a detailed 3D model is required to obtain realistic results. Numerical
simulations proved very useful tool to estimate the spacing of convecting upwelling zones and also showed that convection homogenizes
salinity within the aquifer, with convective flow rates similar to regional groundwater flow rates. The strong association of convection cells
with faults and their persistent nature allow us to more reliably predict thermal regimes in areas that were previously returning large errors in
classical conductive temperature inversions.
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Control of Structures on Fluid Flow

. Effect of structures on fluid flow
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Thermal Entropy Production in a convective flow field
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Convection in a box

North Perth Basin as
a box, heated from
below

Convection cells
In each direction
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Convection In a box

Temperature and flow field
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Convection In a box
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Temperature and flow field
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Temperature and flow field
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Temperature and flow field

Convection In a box
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Convection In a box
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Relationship to uncertainty
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Meter

Relationship to uncertainty
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Comparison of uncertainties

Depth uncertain Additional faults
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Summary + Conclusions

Information Entropy describes uncertainty of geological structure
and can be used for geometric uncertainty quantification

- Thick and permeable sedimentary sequences are prone to
convection which introduces uncertainty in physics of heat trransfer

- Thermal entropy production is a measure of hydrothermal state of
the system, related to heat transport mechanism

It provides a valuable insight beyond temperature analysis

Information and thermal entropy together can be used to (e.qg.
transitions between n cells -> n+1 cells)



Conclusion and Outlook

. Conclusion

- Thermal entropy production as measure of hydrothermal state of
the system, related to heat transport mechanism

- Potentially a valuable insight beyond temperature analysis

- Sensitive to changes in the overall configuration of convective
system (e.g. transitions between n cells -> n+1 cells)

. Outlook
- More detailed theoretical analysis of system
. Effect of forced convection

- Effect of boundary conditions (force/ flux)
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Entropy production during
onset of convection

Entropy production during the onset of convection
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Testing influence of geological uncertainties on
flow fields
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Relationship between entropy production and heat

transfer
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Application to Perth Basin study: two
scenarios of structural uncertainty

Consideration of data
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