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Abstract

Point bars tend to generate sandy lobate reservoir units that fill channels laterally and serve as primary development targets in both
conventional and unconventional fluvial plays. Initial models for point bar growth build upon the presumption of periodic shingling of the
convex inner channel bend with sheet-form sand layers that cover much of the wetted bend surface. Episodic and repetitive sheet addition
causes the channel to migrate in expansional or translational vectors and produces sandy bodies partitioned with regularly spaced, gently
dipping, bar-extensive, and sometimes draped accretion surfaces that record the channel form and resemble large cross sets. This results in
reasonably predictable and easily modeled reservoir architectures. While field evidence argues that this fundamental modern process and rock
product do occur in some approximation, an accumulation of additional field evidence argues that this process is not alone. At least three other
processes also produce point-bar forms, and each of these processes preserves contrasting internal reservoir architecture. These processes are
fragmentary bar accretion, counter point bar accretion, and mid-channel bar accretion. Fragmentary bar accretion results from high-frequency
deposition of small unit bars over only limited areas of the wetted bar surface, commonly followed by dissection and erosional reshaping of the
bar surface and local draping. This results in a bar deposit formed of highly fragmented reservoir units lacking through-going accretion sets and
prone to unpredictable heterogeneity. Counter-point-bar accretion occurs by forced decoupling of the cut-bank flow shear and accretion along
the cut-bank face. This produces concave accretion surfaces in strata typically much muddier and more heterogeneous than classic convex-
accretion bars. Lastly, a lobe sandy body mimicking a true point bar may form in otherwise braided systems by preferential accretion of mid-
channel bars to the inside bend of a braided river that meanders. These tend to form sets of amalgamated sandy mid-channel bars into point-bar
shapes that have mounded accretion surfaces at various orientations. These surfaces may move reservoir fluid flow in erratic direction. Each of
these forms are common, and each includes long internal hiatal surfaces that result in total bar accretion rates that are much slower than rates of
short-term bar growth.
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The Point-bar Model
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Point Bars and the Vertical
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Internal Architecture of Channels Point Bars
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Imaging Bars and Channels in the K McMurray Fm, Alberta
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ICU = intrachannel unit
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Presenter’s notes: Permeability trends tend to follow bounding surfaces and the spatial lithofacies distribution that the bounding surfaces control. In the case of a sandy-gravely lacustrine delta-plain distributary
channel deposit in the Karamay Fm, porosity and permeability are heterogeneously distributed. Fluid-flow units of high-porosity and high permeability zones tend to be close to and are controlled by 3 or 5%
order surfaces



Occurrence of The “Normal” Point Bar?
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Presenter’s notes: In this example, a lateral accretion element formed from a side-attached/point bar has marched across a thalweg fill of a channel above a lower lateral accretion element. The internal
architecture of each element is complex recording higher-order accretion surfaces that reflect changes in bar migration direction.



Alternative Point-bar
Models

1) Counter Point Bar
2) Mid-Channel Bar Accretion

3) Fragmentary Point Bar

4) The Muddy Normal Point Bar
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Dinosaur Provincial Park and the Work of Derald Smith
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The Missouri River




Alternative Point-bar Models

1)Counter Point Bar
2) Mid-Channel Bar Accretion
3) Fragmentary Point Bar

4) The Muddy Normal Point Bar
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Coe Point Bars
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(Smith, et al., 2009)
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Presenter’s notes: Counter point bars occur when bars migrate along the cutbank rather than the bar apex, either because of constriction of downstream bar translation. The slackwaters resulting tend to
manifest as very fine-grained lateral accretion deposits.



Alternative Point-bar Models

1) Counter Point Bar

2)Mid-Channel Bar
Accretion

3) Fragmentary Point Bar

4) The Muddy Normal Point Bar
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Mid-Channel Bar Accretion




Mid-Channel Bar Accretion

Evolution of Channel form during Bar Migration
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Presenter’s notes: Migration of mid-channel bars forces contortion of the flanking channels. Bars may migrate symmetrically or asymmetrically downstream.



Mid-Channel Bar Accretion
Braided River Floodplain Architecture
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Presenter’s notes: The real story here is that these mid channel bars are a second method to creating meanders in braided river. In addition, that they can move any direction they please.
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Mid-Channel Bar Accretion




Abandonment vs. Accretion Braid Belts
Braid belts from Belt Abandonment
Braided River Architecture, Siwa!f!t Mountains, Pakistan
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Loops and Reservoir Geometry/Connectivity
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Presenter’s notes: Even though flow can likely get under the channel to connect the bars, the upper channel is a barrier and prone to trap fluids. In addition, special consideration should be given to
heterogeneity when draining a channel-belt reservoir. Drill penetration of a belt will only generally penetrate a single point bar, which will be compartmentalized by an engulfing channel fill. Production will
drain the petroleum within the penetrated point bar readily, but production of petroleum from adjacent point bars requires connections. Passive channel fills will be highly effective barriers to flow and active
fills will be moderately effective barriers. This means that connection between point bars will need to be made through the base of channel fills. Even if basal connection is effective, some substantial

proportion of the petroleum can be trapped against channel fills in the tops of non-penetrated point bars. A production plan needs to compensate according to recover these fluids.




Alternative Point-bar Models

1) Counter Point Bar

2) Mid-Channel Bar Accretion

3)Fragmentary Point
Bar

4) The Muddy Normal Point Bar
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Fragmentary Point Bar
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Fragmentary Point Bar
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Elevation above seal level, m
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Alternative Point-bar Models

1) Counter Point Bar
2) Mid-Channel Bar Accretion

3) Fragmentary Point Bar

4)The Muddy Normal
Point Bar




The Muddy Normal Point Bar
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Presenter’s notes: The primary autocyclic process at the bar/channel scale is bar migration. First, let us consider side-attached bars. Side-attached bars laterally migrate into the channel and thus form
unidirectional lateral accretion surfaces between bar strata that may progress much farther than one channel width. During high flows, smaller channel may cross and dissect the bar top.
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The Muddy Normal Point Bar
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Presenter’s notes: In this example, a lateral accretion element formed from a side-attached/point bar has marched across a thalweg fill of a channel above a lower lateral accretion element. The internal
architecture of each element is complex recording higher-order accretion surfaces that reflect changes in bar migration direction.



The Legacy of Derald Smith?
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