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Abstract

Mature source-rock intervals commonly act as thermal insulators to heat flow and can be identified by the first derivative of a
wireline temperature log. When displayed in a cross section, the first derivative curve readily identifies intervals where the
temperature curve flattens (insulators) and steepens (conductors). The lithologic control of thermal conductivity is so strong that
stratigraphy can be easily correlated using only the first derivative curve. The first derivate correlates strongly to the sonic curve
in mature source rock intervals; the sonic curve shows slow velocities and the first derivative indicates flattening of the
temperature curve. Because thermal gradient increases at capillary seals, they can be readily identified on first derivative curves.
While it is important to identify the insulating lithologies, it is equally important to identify their persistence through time as this
can profoundly affect the thermal maturity of underlying source rocks. The burial and exhumation history of the Front Range
from southeastern Wyoming to the Monument Hill area of Colorado provides an example of how the pre-Oligocene erosion of
nearly 2500 to 3000 feet of Paleocene section including the Arapahoe, Denver, and Dawson formations can affect the thermal
maturity of source rocks such as the Niobrara or other lower Cretaceous organic shales. While it appears that the Wattenberg
geothermal anomaly controls where the Niobrara is highly thermally mature, the areas where the Niobrara is anomalously
immature may be a function of the erosion of the Paleocene thermal insulator prior to the Oligocene.
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Thermal Properties of Fluids and Rocks
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Presenter’s notes: This graph shows the thermal conductivity of different rock types and subsurface fluids. Thermal conductivity is
shown on the x axis. Better thermal conductors plot farther to the right and better insulators plot farther to the left. The key point on
this graph is that all subsurface fluids are better insulators than all rock types and that hydrocarbons are better insulators than water.
Therefore, more porous rocks are better insulators than low porosity rocks. Oil is about 4 times better insulator than water and gas has

a thermal conductivity near zero, i.e., it is almost a perfect insulator. As a result coal is a very strong insulator because it has high
porosity that is commonly gas filled.



Thermal Conductivity vs Moisture Content of Sandstones with Different Porosities
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Presenter’s notes: This slide shows that thermal conductivity of different sandstones decreases with porosity and increases with
increased moisture content (water is a better thermal conductor than air). The porosities of different sandstones (S1, S2, etc.) are listed
at the top of the slide, as well as next to the graphed data. Data from Konakova, Vejmelkova, and Cerny, 2012, Thermal properties of
selected sandstones: Advances in Modern Mechanical Engineering, p. 100-104, ISBN: 978-960-474-307-0.




Piceance Basin Mesaverde Temperature Log
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Presenter’s notes: Coals act as insulators to heat flow. This slide shows a temperature log of the Mesaverde in the southern Piceance.
The temperature log is shown in red and the scale is 130 to 230 degrees F. The intervals where the temperature curve flattens are
insulators (e.g., coals) and are easily identified on the 1* derivative of the temperature curve (warm colors).

(Presenter’s notes continued on next slide)



(Presenter’s notes continued from previous slide)

The first derivative of the temperature curve shows insulating lithologies like coals in warm colors and conducting lithologies like
sandstone in cool colors. Black dashed trend lines above and below the coal interval are sub-parallel. The offset of those trend lines is
equivalent to about 1,000 ft, therefore the insulating effect of the Cameo coals is roughly equivalent to adding an additional 1,000 ft of
overburden. Recognition of insulating intervals is important when mapping temperature gradient because the calculated thermal
gradient can be very different if the bottom-hole temperature is above versus below the insulating interval. For example, in this well
the thermal gradient increases from 1.94 °F/100 ft above the coal interval to 2.21 °F/100 ft below.
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Mamm Creek Lower Williams Fork Thermostratigraphy
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Presenter’s notes: This slide shows the correlation of first derivative curves of temperature curves from cement-bond logs in five
closely spaced wells in the southern Piceance Basin. Coals are good insulators and the first derivative curve deflects to the right in the
intervals that are color filled with warm colors. Sandstones are good conductors and are color filled with cool colors. The good
correlation of the first derivative curve from well to well indicates that the data are good static temperatures.



Organic-Rich Zones in Mancos-Niobrara - SW Piceance Act as Insulators
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Presenter’s notes: This slide shows first derivative curves from temperature logs run with cement-bond logs from wells in the southern
Piceance Basin. The Mancos and Niobrara are composed of a thick sequence of marine shale that contain organic-rich intervals. In this
area, the Niobrara is in the dry-gas window and gas is produced at high rates from horizontal wells that are landed in

(Presenter’s notes continued on next slide)



(Presenter’s notes continued from previous slide)

the more calcareous and organic-rich benches. These intervals are good insulators due to their high gas saturation and can be identified
by the warm color fill of the first derivative curve. The Juana Lopez has the highest organic content of this entire interval and the first
derivative curve indicates it is the best insulator. The interval at the top of the Niobrara has good organic richness as indicated on the
gamma-ray curve; the first derivative curve indicates it is a good insulator. Line of cross section indicated by red line on inset map.
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Presenter’s notes: The sonic log is displayed adjacent to the first derivative curve in these two wells from the southern Piceance Basin.
High gas saturation in the organic-rich intervals results in slower travel times and good insulating properties as indicated by the warm
colors of the first derivative curve. Line of cross section indicated by red line on inset map.



Organic-Rich Zones in Niobrara — DJ Basin Act as Insulators
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Presenter’s notes: This slide shows first derivative curves from temperature logs run with cement-bond logs from wells in the greater
Wattenberg area of the Denver Basin. The most organic-rich intervals are the Graneros and Sharon Springs and the warm colors of the
first derivative curve show that these intervals are the best insulators. Other intervals within the Greenhorn and Niobrara have warm
colors indicating possible organic richness. The inset map shows the line of cross section along with top Niobrara structure contours in
blue and the 20,000 GOR contour for Codell-Niobrara wells in black.



Temperature Profile May indicate Presence of Unconformitie? 2
emp 18

GR Resistivity Temperature Deriv
0504510713 T6S R98W S11 1000 ft

N\ Mesaverde
temp profile
extrapolated

: ——é\

Wasatch
Mesaverde

e —ccooft RollinsY %

Less compacted, higher porosity rocks above unconformity are less thermally conductive

Presenter’s notes: The temperature log from this southern Piceance Basin well shows the effect of less compacted, higher porosity
rocks above the Wasatch/Mesaverde unconformity. In this area of the Piceance Basin the entire interval shown on this log is water

saturated, and the less compacted rocks above the unconformity are have lower thermal conductivity. Well depths of 1000 and 6600 ft
are shown in the middle of the slide.



Temperature Profile May indicate Presence of Unconformities
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Presenter’s notes: This slide shows that the decreased thermal conductivity of the less compacted rocks above the Wasatch/Mesaverde
unconformity discussed in the previous slide can be correlated to several wells in this area of the western Piceance Basin. Line of
cross section indicated by red line on inset map.



Gas Generated from Coals Forms Capillary Seals* in Adjacent Thinly Bedded
Sandstones and Shales that Can Be Identified on Temperature and SP Logs
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*see Shosa and Cathles (2001) and Revil et al (1997)

Presenter’s notes: Gas generated from coals forms capillary seals in adjacent thinly bedded sandstones and shales that can be
identified on temperature and SP logs. Cathles (2001) and Revil et al. (1997) describe these types of capillary seals. The increased gas
saturation within the capillary seals results in better insulating properties as indicated warm colors on the first derivative curve. The
(Presenter’s notes continued on next slide)



(Presenter’s notes continued from previous slide)

baseline of the SP curve shows sharp deflections at these capillary seals as discussed in a paper by Cumella, Woodruff, and Revil
submitted to AAPG Bulletin in June 2015.

Revil et al., 1998, Capillary sealing in sedimentary basins: a clear field example: Geophysical Research Letters, v. 25, p. 389-392.
Shosa, J.D. and L.M. Cathles, Experimental investigation of capillary blockage of two phase flow in layered porous media: in P.
Weimer and R. H. Fillon, eds. Petroleum systems of deep water basins: Proceedings of the 21st Annual Gulf Coast Section of the
Society of Economic Paleontologists and Mineralogists (now Society for Sedimentary Geology) Foundation Bob F. Perkins Research
Conference, Houston, Texas, p. 1-26.



Temperature Log Observations

Temperature logs are more common than most people realize.
Cement-bond logs commonly have temperature logs.

CBLs are commonly run some time after the well has been drilled and
cased, allowing temperature equilibration of the formation and the
borehole.

Temperature log 1t derivative curves can be used for QC; if the 15t
derivative curves show good correlation, you have good temperature
data.

Temperature log 15t derivative curves are effective at showing
iInsulating and conducting lithologies.

Insulating lithologies are commonly good source rocks.

Temperature gradients calculated from BHTs can be very different if
calculated above versus below source-rock intervals.



How the Presence and Persistence of Coal
Effects Thermal Maturity

(an example from the DJ basin, eastern Colorado)

Coskey

Why did | get started on this? (Michigan basin and Jonah Field)

Why do coals have such low thermal conductivity?

Late Cretaceous and Paleocene — where were the coals?
Present-day coal distribution — Eastern Colorado

Vitrinite reflectance — maturity indicator — error issues
Burial history modeling scenarios

Presence of coal vs thermal maturity indicators

Presenter’s notes: Overview




Observations of Cercone, et al, 1989, 1996
Michigan Basin

‘Almost all Paleozoic strata in the Michigan basin display elevated
levels of organic maturity that cannot be explained by present-day
burial depths, geothermal gradients, or heat flow”

“‘In basins that contain significant thicknesses of coal-bearing or
other carbonaceous strata, it seems likely that underlying units can
experience temperature increases of 10 K (18 F) or more; due
simply to the insulating effect of the carbonaceous overburden.”

‘A 10 K (18 F) increase in temperature roughly doubles organic
reaction rates.”

(Cercone, et al, 1989, 1996)

Presenter’s notes:
Cercone, K.R., and Pollack, H.N., 1989, Anomalous thermal maturity of Michigan basin: New hypothesis: Meeting abstract AAPG,
Vol. 73, No. 3, pp 342.

Cercone, K.R., Deming, D., and Pollack, H.N., 1996, Insulating effect of coals and black shales in the Appalachian basin, western
Pennsylvania: Organic Geochemistry, v. 24, no. 2, p. 243-249.



Michigan Basin Temperature Gradient Changes

During Deposition and Removal of Penn Coal
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Presenter’s notes:

Cercone, K.R., Deming, D., and Pollack, H.N., 1996, Insulating effect of coals and black shales in the Appalachian basin, western
Pennsylvania: Organic Geochemistry, v. 24, no. 2, p. 243-249.



Coal - Thermal Effects at Jonah Field, WY

Continuous borehole temperature data made available by
EnCana (Dean Dubois), revealed dramatic geothermal
gradient changes coincident with the presence of a coal
bearing interval in the lower Fort Union Formation

Temperature shifts (increasing with depth) from to 8 to 10
degrees F are observed across the coal intervals

The 10 degree shift corresponds to the presence of a net
65 feet of coal within 225+/- feet of lower Fort Union coaly
section

PRA study for EnCana circa 2003

Presenter’s notes: Coal — Thermal effects at Jonah Field, Sublette county, WY.




Coal - Thermal Effects at Jonah Field, WY
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Presenter’s notes: Index map showing the temperature log control wells and the line of cross-section presented in following slides.



Jonah Field — Subsurface Temperature Cross section
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Presenter’s notes: Temperature cross-section through the four temperature data control wells. Wells 5-29, 8-13 and 14-34 contain
coals in the Fort Union section. The 1-28 well does not have coal present in the Fort Union.




Jonah Field — Geothermal Gradient Cross section
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Presenter’s notes: Geothermal gradient cross-section through the four temperature data control wells. Wells 5-29, 8-13 and 14-34
contain coals in the Fort Union section. The 1-28 well does not have coal present in the Fort Union. Through the coal bearing interval
the geothermal gradient increases from a background of approximately 1.4 deg F / 100 feet to over 3.0 deg F / 100 feet.



AEC 8-13 Temperature Response thru Coaly Section
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Presenter’s notes: Continuous temperature log and gamma ray data from the AEC 8-13 Yellow Point well showing the increased geothermal gradient
through the Fort Union coaly section. The panel on the right is an expanded view of the coaly section showing how the temperature shifts higher
through each individual coal. The yellow dashed line is a projection of the geothermal gradient above the coaly section downward, and shows a 10
deg F increase in temperature through the coaly section as compared to a non-coal temperature profile.




AEC 8-13 Yellow Point Calibration Plot
Modeled Temp & %VRo (LLNL*) vs Observed Data
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*Lawrence Livermore National Labs kinetic model

Presenter’s notes: AEC 8-13 Yellow Point Calibration plot (derived from burial model) showing modeled temperature (red) and modeled %VRo
(magenta) as compared with the measured data from the continuous temperature log.



Why is Coal Such a Good Insulator?
Coal - Microporosity Size
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Py Digital contrast enhancement

= 20.0 nm

%7 ..-m_‘m :

Molecular Size (nm)
Thermal Conductivity (W m'K-"

Coal HIM images from Kliewer and Walters, 2012

Presenter’s notes: Thermal conductivity in coal is dependent on moisture content, the lower the moisture content (higher gas saturation) the lower the
thermal conductivity. The nanoporosity when filled with low thermal conductivity gases (CH4, CO2, N2) lowers the overall thermal conductivity of
the coal making it a very effective insulator. Helium Ion Microscopy (HIM) images from:

Kliewer and Walters, 2012, Geological Applications of Helium Ion Microscopy:
http://www.imaging-kit.com/applications/geological-applications-helium-ion-microscopy.



Coal Micro Pore Size

May & Anderson, 2013
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Presenter’s notes: Comparison of rock type, hydrocarbon molecular size and pore throat sizes illustrating the very small (~1 nanometer) size of coal
micro porosity.

Nelson, P. H., 2009, It’s a small world after all — The pore throat size spectrum, AAPG Search and Discovery Article #50218, posted January 19,
2010.



Loss of Creation of :
o et Coal Porosity

Porosity Changes with
Thermal Maturity
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Presenter’s notes: Coal porosity as compared with maturity and percent carbon (Rodrigues, 2002, and King and Wilkins, 1944). Porosity is reduced
through early compaction and achieves a minimum porosity at 1.4 %VRo. Conversion of kerogen or breakdown of adsorbed and absorbed liquid
hydrocarbons creates organic porosity and the porosity of the system increases. This model does not include porosity as the result of cleating.

Rodrigues, C.F., Lemos de Sousa, M.J., 2002, The measurement of coal porosity with different gases, International Journal of Coal Geology v. 48,
pp. 245-251.

King, J.G., Wilkins, E.T., 1944. The internal structure of coal. Conf. Ultra-fine Structure of Coals and Cokes, London, 1943. The British Coal
Utilization Research Association, London, pp. 46— 56.



Early Paleocene Paleogeography

Blakey,
cpgeosystems.com/namKT65.jpg

Presenter’s notes: Distribution of shallow marine seaway (and possible lacustrine) depositional environments and the presence of known Paleocene
lignitic coals at approximately 65 ma.

Paleogeography from R. C. Blakey: http://www.cpgeosystems.com/namKT65.jpg.
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Presenter’s notes: Distribution of coals and coal bearing section in eastern Colorado (Roberts, 2007). Coal bearing, late Cretaceous Laramie
Formation shown in tan and areas rich in Paleocene coal shown in gray. The up-dip extent (to the east) of the Paleocene lignitic coal is the present-
day erosional limit and the down-dip extent (as shown) is the economic mining limit of 200 feet. The Paleocene lignites extend further to the west.
Paleocene lignites of the lower Denver Formation (D1) are shaded green on cross section A-A’ (Raynolds, 2002).

(Presenter’s notes continued on next slide)



(Presenter’s notes continued from previous slide)

Roberts, S.B., 2007, Coal in the Front Range Urban Corridor—An Overview of Coal Geology, Coal Production, and Coal Bed Methane Potential in
Selected Areas of the Denver Basin, Colorado, and the Potential Effects of Historical Coal Mining on Development and Land-Use Planning: U.S.
Geological Survey Digital Data Series DDS-69-P.

Raynolds, R.G., 2002, Upper Cretaceous and Tertiary stratigraphy of the Denver Basin, Colorado:
Rocky Mountain Geology, v. 37, no. 2, p. 111-134.



Dawson Arkose (D2) Southern DJ
Lignite Type Log

Arapahoe County

Lignite Zone
450’ gross
~100’ net coal
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Laramie Fm

Laramie Coal Zone

Fox Hills SS

Pierre Sh

Spontaneous Potential Resistivity (Ohmm) Modified from: Soister, 1974

Presenter’s notes: Southern DJ basin type log; Davis Oil, Andy 1, nw nw 07-5S5-63W. The Paleocene lignite zone is approximately 450 to over 500

feet thick with laterally varying amounts of coal (100’ in this well). The K/T boundary is very close to the base of the lignite zone. Log modified
from Soister, 1974.

Soister, P.E., 1974, A preliminary on a zone containing thick lignite beds, Denver basin, Colorado. U.S. Geological Survey Open-File Report 74-27,
48 p., plate 2.



Building the Regional %VRo Map
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Cl=0.05
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%VRo data from: Higley, 1985, Cluff and others

Presenter’s notes: Vitrinite reflectance map (%VRo) constructed from multiple data sources, Higley, 1985, Hallau and Cluff (multiple years) and
proprietary industry reports. Outliers (inside red circle) on Depth vs. %VRo cross-plot are shown as “plus” symbols on the %VRo map.

(Presenter’s notes continued on next slide)



(Presenter’s notes continued from previous slide)

Hallau, D.G., Vitrinite reflectance off Cretaceous coaly material and thermal maturity of the Niobrara Formation, DJ Basin, Colorado, USA. In press,
RMAG currently untitled publication, RMAG.

Higley, D.K., et al, 1985, Isoreflectance map of the J Sandstone in the Denver basin of Colorado, U. S. Geological Survey, Open File Report 85-384.
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Presenter’s notes: Vitrinite reflectance standard deviation map constructed from multiple data sources, Higley, 1984, Hallau and Cluff (multiple
years) and proprietary industry reports. The same field of outliers shown on the previous slide are repeated here illustrating the increasing
uncertainty with mean %VRo with increasing maturity in the greater Wattenberg field area, Weld, county, Colorado.



%VRo Standard Deviation Changes with Maturity
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Presenter’s notes: Vitrinite reflectance histogram “cross-section” A-A’ (location shown as red line on previous slide). It is uncertain as to why the
error increases with increasing maturity but this phenomenon has also been recognized in the Raton Basin. This may be related to slight differences
in the devolatization of coal macerals at higher thermal maturity or it may be due to the difficulty in maceral identification at higher levels of thermal
maturity.




Raton Basin — “Normal %VRo” vs Contact Effects

Flores and Bader, 1999 Cooper, 2006
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Presenter’s notes: Raton basin regional geology (Flores and Bader, 1999) and %VRo (Cooper, 2006), showing the location of sample JCRB25; a
coaly section affected by sill injection.

Flores, R.M., and Bader, L.R., 1999, A summary of Tertiary coal resources of the Raton basin, Colorado and New Mexico, in U.S. Geological Survey
Paper 1625-A Chapter SR.

Cooper, J.R., 2006, Igneous intrusions and thermal evolution in the Raton basin. CO-NM: Contact metamorphism and coal-bed methane generation,
University of Missouri-Columbia Master of Science Thesis, 249 p.



Raton Basin — “Normal %VRo” vs Contact Effects
Single Sill Example — Area JCRB25
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Presenter’s notes: Schematic diagram showing coal vitrinite sampling locations in vicinity of igneous sill.



Raton Basin — “Normal %VRo” vs Contact Effects
Single Sill Example — Area JCRB25
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Presenter’s notes: Increasing mean vitrinite reflectance with increasing proximity to igneous sill.



Raton Basin — “Normal %VRo0” vs Contact Effects

Distal Sill Example — Sample JCRB25 - |

Sample JCRB25-| Coal [ ]I Sample JCRB25-I
483 cm above sill Shale A
16 Coal CH
Mean %Ro = 0.68
Shal
1 i 483 cm
12
Sandstone
Coal o
oa =
& 10 .
= Sy i SRR e
g ‘ " Sl
s o8 } ] il ;
6
4 Sandstone
2171 Coal LA
0 Cooper, 2006
% Random Reflectance

Presenter’s notes: Vitrinite reflectance histogram (sample JCRB25-1). This vitrinite population in this sample (483 cm above the sill) is similar in
shape to that of many other samples that are not proximal to thin sills in the Raton basin study by Cooper, 2006.



Raton Basin — “Normal %VRo” vs Contact Effects

Proximal Sill Example — Sample JCRB25 - G
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Presenter’s notes: Vitrinite reflectance histogram proximal to sill (sample JCRB25-G, 51 cm above sill) show considerable histogram spread
(increasing standard deviation).



Raton Basin — “Normal %VRo0” vs Contact Effects
All Samples
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Presenter’s notes: Cross-plots of all vitrinite data published by Cooper, 2006. %Ro population standard deviation vs Vitrinite Reflectance (left) shows
a strong relationship with increasing population standard deviation with increasing mean %Ro. The “background” %Ro values are shown inside the
yellow highlight. %Ro population standard deviation vs Distance from Sill Contact (cm) shows increasing %Ro population standard deviation with
proximity to the igneous sill heat source.




DJ Basin — “Normal %VRo”
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Presenter’s notes: DJ basin sample population standard deviation vs vitrinite reflectance plot. The “background” vitrinite populations are shown
highlighted in yellow and the high standard deviation outliers are highlighted in red. The points shown in red are located within the Wattenberg field
area. This area is geothermally warmer than areas outside the field and vitrinite reflectance indicates a higher level of thermal maturity (with much
higher mean %VRo standard deviation).




DJ Basin — “Normal %VRo” vs CMB Heat Pulse

Heating event @ Oligocene-Miocene or younger
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Presenter’s notes: Temperature cross-section trending southwest to northeast across Wattenberg field (Meyer and McGee, 1985) illustrating the
elevated temperatures in the field area.

Meyer, H.J., and McGee, H.W., 1985, Oil and gas fields accompanied by geothermal anomalies in the Rocky Mountain Region, AAPG Bulletin, V.
69, No. 6, p. 933-945.



DJ Basin — “Normal %VRo” vs CMB Heat Pulse

Heating event @ Oligocene-Miocene or younger
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Presenter’s notes: Placement of a “normal” vitrinite histogram outside the effect of the Wattenberg heat anomaly.



DJ Basin — “Normal %VRo” vs CMB Heat Pulse

Heating event @ Oligocene-Miocene or younger
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Presenter’s notes: Placement of an anomalously high standard deviation vitrinite histogram within the effect of the Wattenberg heat anomaly. The
unanswered question is; will vitrinite histograms behave “normally” (with tight distributions) with regular burial in an environment of constant heat
flow or will the standard deviation of vitrinite populations rapidly increase at mean %Ro greater than 0.8, with or without an anomalous heating
event (either the CMB event or in the case of the Raton basin, the injection of an igneous sill).



Vitrinite Reflectance Errors and Data Quality

Quantity (minimum of 20 measurements)
Quality of samples (poor polish, pitted)

Size (particles larger than measuring spot, not
small particles)

Type (vitrinite-like organic materials, correct
particle identification)

Pure samples (core is better, cuttings may be
contaminated with mud additives, etc)

Thermal maturity (anisotropy, >1% VRO0)
Reflectance suppression/enhancement (e.g.,
alginate, oxidizing environs)

Modified from Cardott, 2012

Presenter’s notes: Vitrinite reflectance errors and data quality.

Cardott, B.J., 2012, Introduction to vitrinite reflectance as a thermal maturity indicator, AAPG Search and Discovery Article #40928, posted May 21,
2012.




Post Cretaceous Geohistory
Eastern Colorado

Presenter’s notes: Post Cretaceous Geohistory of Eastern Colorado
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Presenter’s notes: Front range of Colorado geologic map (Tweto, 1979), illustrating the different geohistories of the northern vs. the southern DJ
basin. In the southern DJ basin approximately 2800-3000 feet of Paleocene is present (brown colors on map) between the Laramie Formation (light
green) and Eocene units (pink) such as the White River Formation and Castle Rock Conglomerate.

Tweto, Ogden, 1979, Geologic Map of Colorado, U. S. Geological Survey .



Northern Denver Basin — Cross Section

” S B

EAST

All? of the Paleocene is absent oSN
by erosion .

~ 2

amaq ROGERS Mmi’fl g,:(P‘., =¢]

. Rezker ™ Lgaiboch *1
Sec 29, TN R Q2w See 36,7 O RE2W ,; Ercu R ok Sac BR,YON,R MW

T

L e

E
| -
'n
o
|,

|

lM
Reade, 1978 :""‘E' =5

Presenter’s notes: Cross-section A-B (Reade, 1978) illustrating the unconformable relationship between the Laramie Formation and the overlying
White River Formation. The entire Paleocene section has been removed by erosion or non-deposition.

Reade, H.L., 1978, Uranium deposits: Northern Denver Julesburg basin, Colorado; in Energy Resources of the Denver Basin, Rocky Mtn. Assoc. of
Geologists Guidebook, pp. 161-171. Pruit, et al, eds.
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Presenter’s notes: Shaded relief map of eastern Colorado with outcrops of Tertiary White River Group and Laramie Formation posted. The
elevations of the basal White River contact was used to produce the block diagram (upper right) which shows the dip of the post-Paleocene
unconformity dipping approximately 0.5 degrees to the north-north-east. This is in agreement with the cross-section of Robson, 1987.

Robson, S.G., 1987, Bedrock aquifers in the Denver basin, Colorado; a quantitative water-resources appraisal, U. S. Geological Survey, Professional
Paper 1257.



White Rocks Open Space — Boulder County

Google earth
C

Presenter’s notes: Exposure of Fox Hills Sandstone located approximately 5.6 miles east-north-east of boulder, Colorado. (Latitude: 40.05360,
Longitude: -105.16091).

Google earth imagery date: 10/6/2014.




Geohistory & Stratigraphic Correlations

Southern vs Northern Denver Basin

South End of Paleocene North
VE = 75x

Paleocene

\ Laramie

Presenter’s notes: Schematic development of the western DJ basin. Shown here is a simplistic representation of a north-south cross section (yellow
line on earlier slide) of the western DJ basin at the end of Paleocene and prior to post Paleocene uplift and erosion.



Geohistory & Stratigraphic Correlations

Southern vs Northern Denver Basin

South Post Paleocene — Erosional Event North

VE = 75x

Lignites

Laramie

Presenter’s notes: Schematic development of the western DJ basin. Shown here is a simplistic representation of a north-south cross section of the
western DJ basin at the end of post Paleocene uplift and erosion. Note 75x vertical exaggeration.



Geohistory & Stratigraphic Correlations

Southern vs Northern Denver Basin

South Late Eocene-Oligocene North

VE = 75x
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Presenter’s notes: Schematic development of the western DJ basin. Shown here is a simplistic representation of a north-south cross section of the
western DJ basin at the end of Eocene-Oligocene White River Group deposition.



Geohistory & Stratigraphic Correlations

Southern vs Northern Denver Basin
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Presenter’s notes: Schematic development of the western DJ basin. Shown here is a simplistic representation of a north-south cross section of the
western DJ basin at present-day.



Geohistory & Stratigraphic Correlations

Southern vs Northern Denver Basin
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Presenter’s notes: Comparison of the present-day stratigraphic columns representing the southern DJ basin vs the northern DJ basin (Roberts, 2007).

Roberts, S.B., 2007, Coal in the Front Range Urban Corridor—An Overview of Coal Geology, Coal Production, and Coal Bed Methane Potential in
Selected Areas of the Denver Basin, Colorado, and the Potential Effects of Historical Coal Mining on Development and Land-Use Planning: U.S.
Geological Survey Digital Data Series DDS-69-P.



Building the Model - Calibration Data - %VRo
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Presenter’s notes: Calibration data used in construction of geohistory and burial history model. Within the DJ basin there are only a few “control
wells” where continuous vertical sampling of %VRo maturity data is available. The three wells shown represent the best, continuous vertical

sampling of vitrinite reflectance data and were taken from Tainter, 1984. In these plots (logarithmic %VRo vs linear depth), the best fit (dashed red)
(Presenter’s notes continued on next slide)




(Presenter’s notes continued from previous slide)
is projected above the present-day surface (0 depth in feet). The intercept with the Y-axis at 0.2 VRo is an indication of erosional magnitude (Dow,
1977). The interpretation is that the amount of uplift/erosion decreases from north to south and is in agreement with the observations from geologic

mapping. The data set outlined in yellow was used to build the burial history model shown in following slides.

Tainter, P.A., 1984, Stratigraphic and paleostructural controls on hydrocarbon migration in Cretaceous D and J sandstones of the Denver basin, in
Hydrocarbon source rocks of the Greater Rocky Mountain Region, RMAG 1984, pp. 339-354.

Dow, W.G., 1977, Kerogen studies and geological interpretations: Journal of Geochemical Exploration, v. 7, no. 2, pp. 79-99.



Burial History Model
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Presenter’s notes: Location of Amoco 344A1 well burial history model. The well is spud in the Laramie and there is no Paleocene stratigraphy
preserved in this area. Colorado geologic map (Tweto, 1979).

Tweto, Ogden, 1979, Geologic Map of Colorado, U. S. Geological Survey .
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Presenter’s notes: Amoco 344A1 (API: 05-123-08890, TRS: 25-10N-64W) burial history plots — 1 model with 4 scenarios.

Shown above (scenario 1) with the deposition of only a minimal amount of Paleocene, the Niobrara “C” (blue marker) does not enter the mid mature
oil window; only a small amount of o0il would have been generated.

In all scenarios, all other parameters; heat flow model, rock properties, etc. were held constant.

Model built with Platte River Associates, BasinMod: October 2014 release.



Amoco 344A1 — Burial History Scenarios

1 Model — 4 Scenarios
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Presenter’s notes: Amoco 344A1 (API: 05-123-08890, TRS: 25-10N-64W) burial history plots — 1 model with 4 scenarios.

Shown above (scenario 2) with the added deposition of ~3000 feet of Paleocene that DOES NOT include any coal or coaly material, the Niobrara
“C” (blue marker) just enters the top of the mid mature oil window; significant quantities of oil are generated but barely enough to expel any liquid
hydrocarbons from the kerogen rich shaly marls into the chalks (reservoirs).



Amoco 344A1 — Burial History Scenarios

1 Model — 4 Scenarios
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Presenter’s notes: Amoco 344A1 (API: 05-123-08890, TRS: 25-10N-64W) burial history plots — 1 model with 4 scenarios.

Shown above (scenario 3) with the added deposition of ~3000 feet of Paleocene that DOES include 100 feet of lignite within a 400 foot thick shaly

section, the Niobrara “C” (blue marker) is now well into the mid mature oil window; significant quantities of oil are generated and expelled from the
kerogen rich shaly marls into the chalks (reservoirs).



Amoco 344A1 — Burial History Scenarios

1 Model — 4 Scenarios
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Presenter’s notes: Amoco 344A1 (API: 05-123-08890, TRS: 25-10N-64W) burial history plots — 1 model with 4 scenarios.

Shown above (scenario 4) the same as scenario 3 but with the addition of a thin (25 foot) thick Laramie coal section (included in green marker) . As
with scenario 3, the Niobrara “C” (blue marker) is now well into the mid mature oil window; significant quantities of oil are generated and expelled
from the kerogen rich shaly marls into the chalks (reservoirs). However, the addition of the thin Laramie coal does not significantly change the

generation and expulsion picture.



Amoco 344A1 — Cumulative Generated Hydrocarbons

Hydrocarbon Generation amounts are for the Niobrara ‘C’ Marl/Shale
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Presenter’s notes: Amoco 344A1 (API: 05-123-08890, TRS: 25-10N-64W) cumulative generated hydrocarbons plot for the Niobrara “C” Marl — 1
model with 4 scenarios.

Shown above (scenario 1) with the deposition of only a minimal amount of Paleocene, the Niobrara “C” (blue marker on burial history plot) does not
enter to mid mature oil window; only a small amount of oil would have been generated. While some hydrocarbons have been generated, no
hydrocarbons have been expelled. Calculated maximum %VRo is approximately 0.67.



Amoco 344A1 — Cumulative Generated Hydrocarbons

Hydrocarbon Generation amounts are for the Niobrara ‘C’ Marl/Shale
average initial TOC 3.2 wt%
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Presenter’s notes: Amoco 344A1 (API: 05-123-08890, TRS: 25-10N-64W) cumulative generated hydrocarbons plot for the Niobrara
“C” Marl — 1 model with 4 scenarios.

Shown above (scenario 2) with the added deposition of ~3000 feet of Paleocene that DID NOT include any coal or coaly material, the
Niobrara “C” (blue marker on burial history plot) just enters the top of the mid mature oil window; significant quantities of oil are
generated but barely enough to expel any liquid hydrocarbons from the kerogen rich shaly marls into the chalks (reservoirs). While
significant hydrocarbons have been generated, no hydrocarbons have been expelled. Calculated maximum %VRo is approximately
0.73.



Amoco 344A1 — Cumulative Generated Hydrocarbons

Hydrocarbon Generation amounts are for the Niobrara ‘C’ Marl/Shale
average initial TOC 3.2 wt%
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Presenter’s notes: Amoco 344A1 (API: 05-123-08890, TRS: 25-10N-64W) cumulative generated hydrocarbons plot for the Niobrara
“C” Marl — 1 model with 4 scenarios.

Shown above (scenario 3) with the added deposition of ~3000 feet of Paleocene that DOES include 100 feet of lignite within a 400
foot thick shaly section, the Niobrara “C” (blue marker on burial history plot) is now well into the mid mature oil window; significant
quantities of oil are generated and expelled from the kerogen rich shaly marls into the chalks (reservoirs). Significant hydrocarbons
have been generated and expelled from the source horizons. Calculated maximum VRo is approximately 0.77.

Level of conversion (Transformation ratio) is about 65%.



Amoco 344A1 — Cumulative Generated Hydrocarbons

Hydrocarbon Generation amounts are for the Niobrara ‘C’ Marl/Shale

average initial TOC 3.2 wt%
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Presenter’s notes: Amoco 344A1 (API: 05-123-08890, TRS: 25-10N-64W) cumulative generated hydrocarbons plot for the Niobrara
“C” Marl — 1 model with 4 scenarios. (Presenter’s notes continued on next slide)



Presenter’s notes continued from previous slide)

Shown above (scenario 4) the same as scenario 3 but with the addition of a thin (25 foot) thick Laramie coal section (included in green
marker) . As with scenario 3, the Niobrara “C” (blue marker on burial history plot) is now well into the mid mature oil window;
significant quantities of oil are generated and expelled from the kerogen rich shaly marls into the chalks (reservoirs). However, the
addition of the thin Laramie coal does not significantly change the generation and expulsion picture. Significant hydrocarbons have
been generated and expelled from the source horizons. Calculated maximum %VRo is approximately 0.77.

Level of conversion (Transformation ratio) is about 65



Amoco 344A1 - Calibration
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Presenter’s notes: Amoco 344A1 (API: 05-123-08890, TRS: 25-10N-64W) calibration plot — 1 model with 4 scenarios.

Shown above (scenario 1) with the deposition of only a minimal amount of Paleocene, the modeled temperature and vitrinite
reflectance values do not match very well to the observed present-day temperature and measured vitrinite reflectance data.



Amoco 344A1 — Calibration
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Presenter’s notes: Amoco 344A1 (API: 05-123-08890, TRS: 25-10N-64W) calibration plot — 1 model with 4 scenarios.

Shown above (scenario 2) with the added deposition of ~3000 feet of Paleocene that DID NOT include any coal or coaly material.
Modeled temperature and vitrinite reflectance data begin to fit the observed data.



Amoco 344A1 — Calibration

Paleocene with lignite zone added — Present Day
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Presenter’s notes: Amoco 344A1 (API: 05-123-08890, TRS: 25-10N-64W) calibration plot — 1 model with 4 scenarios.

Shown above (scenario 3) with the added deposition of ~3000 feet of Paleocene that DOES include 100 feet of lignite within a 400
foot thick shaly section. Modeled temperature and vitrinite reflectance data fit the observed data much better than scenario 2.



Amoco 344A1 - Calibration

Paleocene with lignite and Laramie coals added
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Presenter’s notes: Amoco 344A1 (API: 05-123-08890, TRS: 25-10N-64W) calibration plot — 1 model with 4 scenarios.

Shown above (scenario 4) the same as scenario 3 but with the addition of a thin (25 foot) thick Laramie coal section. There is no
significant change in the modeled present-day temperature and vitrinite reflectance data verses the observed data comparing scenario 3
and scenario 4.



Amoco 344A1 — Depth Plot — Thru Time

Calculated Temperature & %VRo (at Niobrara ‘C’)
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Presenter’s notes: Amoco 344A1 depth plot through time (100ma slice). The next 10 slides represent a time slices showing burial of

sediment through time and calculated temperature (red) and vitrinite reflectance (magenta). The time slices are: 100ma, 90ma, 80ma,
70ma 65ma, 60ma, 50ma, 40ma, 30ma, 20ma, 10ma and Present-day.



Amoco 344A1 — Depth Plot — Thru Time

Calculated Temperature & %VRo (at Niobrara ‘C’)
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Presenter’s notes: Amoco 344A1 depth plot through time (90ma slice).



Amoco 344A1 — Depth Plot — Thru Time

Calculated Temperature & %VRo (at Niobrara ‘C’)
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Presenter’s notes: Amoco 344A1 depth plot through time (80ma slice). Reference dots have been added at the Niobrara “C” bench
level for better visualization. The red dot shows the calculated temperature and the magenta dot shows the calculated %Ro at
Niobrara “C”.



Amoco 344A1 — Depth Plot — Thru Time

Calculated Temperature & %VRo (at Niobrara ‘C’)
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Presenter’s notes: Amoco 344A1 depth plot through time (70ma slice). This time slice shows the dramatic increase in temperature due
to the rapid deposition of the Pierre shale units. The Niobrara “C” has not entered the oil window.



Amoco 344A1 — Depth Plot — Thru Time

Calculated Temperature & %VRo (at Niobrara ‘C’)
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Presenter’s notes: Amoco 344A1 depth plot through time (65ma slice). The Niobrara “C” would have just entered the top of the oil
window and minor amounts of hydrocarbons are being generated.



Amoco 344A1 — Depth Plot — Thru Time

Calculated Temperature & %VRo (at Niobrara ‘C’)
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Presenter’s notes: Amoco 344A1 depth plot through time (60ma slice). The Niobrara “C” is within the oil window and hydrocarbons
are being generated but not expelled.



Amoco 344A1 — Depth Plot — Thru Time

Calculated Temperature & %VRo (at Niobrara ‘C’)
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Presenter’s notes: Amoco 344A1 depth plot through time (50ma slice). The Niobrara “C” is within the oil window, near maximum

burial, hydrocarbons are being generated and expelled.



Amoco 344A1 — Depth Plot — Thru Time

Calculated Temperature & %VRo (at Niobrara ‘C’)
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Presenter’s notes: Amoco 344A1 depth plot through time (40ma slice). Early uplift begins, hydrocarbon generation slows.



Amoco 344A1 — Depth Plot — Thru Time

Calculated Temperature & %VRo (at Niobrara ‘C’)
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Presenter’s notes: Amoco 344A1 depth plot through time (30ma slice). Uplift and erosion continues.



Amoco 344A1 — Depth Plot — Thru Time

Calculated Temperature & %VRo (at Niobrara ‘C’)
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Presenter’s notes: Amoco 344A1 depth plot through time (20ma slice). Uplift and erosion continues.



Amoco 344A1 — Depth Plot — Thru Time

Calculated Temperature & %VRo (at Niobrara ‘C’)
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Presenter’s notes: Amoco 344A1 depth plot through time (10ma slice). Uplift and erosion continues.




Amoco 344A1 — Depth Plot — Thru Time

Calculated Temperature & %VRo (at Niobrara ‘C’)
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Presenter’s notes: Amoco 344A1 depth plot through time (Present-day slice). Uplift and erosion to present-day surface. This slide
compares the modeled results with the observed data; bottom hole temperature (measured and corrected) and modeled &Ro with
measured vitrinite data. It also shows the modeled maximum burial depth of 10,240 feet with a maximum temperature at Niobrara
“C” of 243 deg F. The calculated %Ro at J Sandstone level is approximately 0.80 %Ro which is in good agreement with the measured
%Ro data (see %VRo map).
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Presenter’s notes: Location map (COGIS, 04/2015) showing the position of the Amoco 344A1 modeled well and its position relative
to recent Niobrara play activity in the northern DJ basin.

Colorado Oil & Gas Conservation Commission (COGIS, accessed 04/2015) http://dnrwebmapgdev.state.co.us/mg2012app/
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Relationship of Coal Presence
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Legend
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Distribution of coal bearing rocks:
Burnell, et al, 2008 (CGS)

Presenter’s notes: Relationship of coal presence (Burnell, et al, 2008) to J sandstone maturity (%VRo). This slide shows an overlay of
both Paleocene and Laramie coals with J Sandstone maturity expressed as %VRo. There appears to be minimal correlation of coal
presence with thermal maturity except with the possibility of a %VRo contour “pull out” as seen in the southwestern part of the map
where the presence of the Paleocene coaly section appears to be coincident with an area of higher maturity.

Burnell, J.R., et al., 2008, Colorado mineral and energy industry activities, 2007, Colorado Geological Survey, Information Series 77,
p. 26.
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Presenter’s notes: Relationship of coal presence to J sandstone maturity (% VRo) and Niobrara maximum resistivity (Milne, J.J. and
Cumella, 2014). The right hand panel of this slide compares Niobrara maximum resistivity (another maturity proxy) with J Sandstone
%VRo. The black box on the left panel is the approximate area shown on the maximum resistivity map.

(Presenter’s notes continued on next slide)



(Presenter’s notes continued from previous slide)

This slide adds an additional overlay of the Paleocene coals that are buried the deepest and potentially the thickest (due to erosion of
the section to the east). The juxtaposition is in the area of highest Niobrara maximum resistivity in the southern DJ basin.

The area with present-day coal-bearing Paleocene has been juxtaposed on the maximum resistivity map and there is a good correlation
of elevated Niobrara resistivity with the presence of coal. This area also in part corresponds to the higher %VRo 0.7 contour pullout.

This slide shows highlighted areas of anomalous Niobrara maximum resistivity that may be explained by the presence of Paleocene
coals that were eroded sometime before the White River Group rocks were deposited. The inference is that not all of the areas that
appear more mature are due to local higher heat flow but may be the result of preserved of heat within the system due to the insulating
effect of coal whether it is present today or not.

Milne, J.J. and Cumella, S.P., 2014, DJ basin horizontal Niobrara play, in J.P. Rogers, J.J. Milne, S.P. Cumella, D. Dubois, P.G. Lillis,
eds., Oil and gas fields of Colorado 2014: RMAG pp. 190-235.



Relationship of Coal Presence Niobrara Production
to Maximum Niobrara Resistivity Horiz well 6 month production

o Whiting, 2015

- o - AT
¥ At

| Wyoming _ @

.. | X | ! Nebraska

Coal bearing
Paleocene
>150 cover

vowow v v ow o v v ow Al L
! T T A

Production map courtesy of John Forster

Presenter’s notes: Comparison of Niobrara maximum resistivity (with Paleocene coal overlay) with Niobrara horizontal well 6 month
production map (Forster, 2015 unpublished map). The black box (on both maps) outlines the area of recent Niobrara activity in the
southern DJ basin. The area of successful activity is in an area of elevated Niobrara resistivity and corresponds to an area of thick
Paleocene cover containing insulating coal.



Conclusions

Coals have very low thermal conductivity (by 10x)

18t Derivative of temperature can be used to identify low thermal
conductivity rocks such as coal and source rocks

The presence and persistence of coals in the sedimentary stack can
significantly affect thermal maturity, especially at critical maturity
thresholds

Not all maturity anomalies are the result of local basement heat sources

There is a good correlation between present-day Paleocene coals and
Niobrara resistivity

Caveat 1: Presence or absence of underlying salts?

Caveat 2: “All models are wrong, but some are useful”
George Box (a famous Bayesian), 1951
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Extra Slides



Correlation Chart For Maturity Indices
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Presenter’s notes: Composite correlation chart for maturity indicies.




