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Abstract 

 

A comprehensive framework and fresh perspective to pore pressure prediction methods and algorithms based on the established geological building 

blocks is presented. Applying the suggested four subsurface zones is the backbone of this pore pressure prediction approach. Determining the boundary of 

the four subsurface zones utilizing petrophysical data is crucial for selecting the appropriate method and algorithms for pressure prediction. 

  

This approach divides the previously so-called normally pressured upper section into two zones: namely hydrostatic and hydrodynamic. Consequently, 

data in the hydrodynamic section is used to establish the compaction trend and not the entire section above the top of geopressure. The section below the 

top of geopressure is divided into transition and geo-pressured zones. This method is to mathematically calculate the compaction trend, rather than 

graphically displaying it for calibration purposes. Moreover, it eliminates the confusion of extrapolating the effective stress predictive values above the 

top of geopressure. Algorithm supported by empirical data is introduced to calculate the sand beds vs. formation and mud pressures to evade the deep 

water’s shallow water flow (SWF) and sinking wells’ head (SWH).  

 

Entrapment represents the main cause of overpressure buildup. Fluid pressure inflation due to stress, aqua-thermal and dewatering processes is the genesis 

and not the outcome. Therefore, the effective seal is the main cause of creating excess pressure. Investigating possible breach due to subsurface structural 

failure is a key objective for pore pressure prediction. 

 

The subsurface hydro-geological zoning greatly affects the velocity, resistivity and density profiles. Seismic velocity to pore pressure transformation 

modeling foresees the trio process from generation to expulsion to entrapment before drilling the prospect. The newly introduced subsurface partitions, 

trio concept, algorithms and predictive modeling incorporated with the geological setting are supported by case histories from the Gulf of Mexico 
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Plot a (left) displays zone B Upper Pleistocene sands pressure–depth relationship in deep water wells. The measured pressure 
data (RFT) shows a shift in the pressure gradient (slope) from 0.59 to 0.53 psi/ft between the deep and the shallow section 
respectively. Moreover, the resulting hydraulic head (intercept) is higher in the shallow than the deep section.  Plot b (right) 
shows the average gradient. 
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Mud weight (MW) recorded data used to drill several wells in zone B of the GOM deep water. Plots (a), (b) and (c) are MW 
from Mississippi Canon, Green Canyon, and Garden Banks respectively.  Note that the MW increases with depth to combat 
the increase of the hydrodynamic pressure gradient. A subtle difference can be noticed on the MW-depth distribution 
charts among the different areas.  Plot (d) is the average MW and feasible formation pressure (FFP) calculations of the 
entire collected data set in ppg. 

Figure (a) Δt (converted from interval seismic velocity) vs. depth. The blue series represent the entire observed data set ( Δto) and red series shows the extrapolated values of ΔtCT as if the compaction trend in 
zone B did not change slope across zone C and D.  Figure (b) shows the discrepancy between conducting the calculations based on the data extracted from the compaction of zone B (red series) vs. data extracted 
from the so called normal compaction trend (blue series) which includes A and B zones. The inserted ΔtCT plot (on right) shows the method of extrapolating ΔtCT below the top of geopressure (zones C and D). 
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The before drilling predictive pressure model for the four zones is shown on the left plot (a). A comparison between the conventional and the newly proposed method is 
displayed on the right plot (b). Open green circle represents the mud weight that was used to drill a nearby offset well and also calibrates the pre-drill model. Note the ≈5000 
psi pressure ramp at zone C.  

Top: The geological setting of Auger basin, Gulf of Mexico and the seismic 
tie between the Macaroni field and Mt. Massive prospect (after Shaker, 
2004). Seismic was extracted from the disappointing seismic anomalies 
seminar by the Houston Geological Society, 2003.  
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Right : Correlation between the geopressure analysis of GB 602 (right) and 
GB 600 (left). Note the four zones, especially C, are well represented on 
the right plot whereas, the left plot is missing the C and D zones due to 
subsurface structural failure. Hydro (GoM), PS (OBG), PPP(shale R), RFT(PP 
sand), MW psi, LOT psi are hydrostatic, principal stress, predicted pore 
pressure from resistivity, repeated formation tester, mud weight and leak 
off test respectively. Note sand ratio is higher in GB 600 #1 (more 
deposition) compared to GB 602 #2 on log images. Moreover, GB 600#1 
drilled with overbalanced mud weight since GB 602 #2 MW was used as a 
template. 
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Calibration criterion during drilling MWD - pore pressure of the before drilling seismic-pressure 
model is shown.  Zones A pp (blue) and Zone B PP (orange) are calculated (equations 2 and 9). 
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Deposition of Stratigraphic Sequences impacts the pressure profile development. Cyclic maximum flooding surfaces 
alternating with low stand deposits create subsidence, stress, heat, compartmentalization and the repeating of the 
compaction process through geological time. Note the different pressure gradient’s trend behavior of shale vs. sand. 

STRUCTURAL FAILURE’S IMPACT ON PPP 

  The confident seal is the main cause of 

excess pressure. 

   Stress, heat, HC are responsible for in 

situ pressure only 

   Pressure profile is divided into four zones 

rather than two. 

   Compaction Trend (CT) and is not 

Normal Compaction Trend (NCT). 

   PPP uses Zone B data extrapolation only 

and not zones A and B 

   PPP should be done separately in each 

zone A,B,C and D 

   Effective stress theorem applies only 

below the TOG. 

   Examining the geological building blocks 

especially structural failure prior to PP 

prediction 

CONCLUSIONS 
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discrepancy between onshore and 
offshore subsurface regarding the four 
zones distribution.  
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A comprehensive framework and fresh perspective to pore pressure prediction methods and 

algorithms based on the established geological building blocks is presented. Applying the 

suggested four subsurface zones is the backbone of this pore pressure prediction approach. 

Determining the boundary of the four subsurface zones utilizing seismic data is crucial for 

selecting the appropriate method and algorithms for pressure prediction.  

 

This approach divides the previously so-called normally pressured upper section into two zones: 

namely hydrostatic and hydrodynamic. Consequently, data in the hydrodynamic section is used 

to establish the compaction trend and not the entire section above the top of geopressure. The 

section below the top of geopressure is divided into transition and geopressured zones. This 

method calculates the compaction trend, rather than graphically displaying it for calibration 

purposes. Moreover, it eliminates the confusion of extrapolating the predicted effective stress 

values above the top of geopressure.  

 

In this paper, entrapment represents the main cause of overpressure buildup. Fluid pressure 

inflation due to stress, aqua-thermal and dewatering processes is the genesis and not the 

outcome.  The effective seal is the main mechanism for creating excess pressure. Investigating 

possible breach of the seal due to subsurface structural failure is a key objective for pore 

pressure prediction. 

 

The subsurface hydro-geological zoning greatly impacts the velocity, resistivity and density 

profiles. Seismic velocity to pore pressure transformation modeling foresees the trio process 

from generation to expulsion to entrapment before drilling the prospect. The newly introduced 

subsurface partitions, trio concept, algorithms and predictive modeling incorporated with the 

geological setting are supported by case histories from the Gulf of Mexico. 
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The impact of the subsurface four zones on Resistivity and Velocity

The relationship between porosity, burial depth and fluid pressure is shown on the left panel. The four zones - A, B, C and D are exhibited on the right panel.  The Compaction Trend  
(yellow dashed curve) represents the extrapolated porosity and pressure values as if retention of fluids has not taken place. On the right panel, the impact of the four subsurface 
pressure zones on the resistivity and sonic logs is shown.   

GEOLOGY -  HYDROLOGY – GEOPRESSURE  -  PETRPHYSICAL PROPERTIES  WITHIN  THE  SUBSURFACE   4   ZONES 

SEQUENCE STRATIGRAPHY AND  PP DEVELOPMENT 
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Velocity changes vs. depth due the presence of the four subsurface zones (A, B, C and D) in different 
geological settings: (a) deep water, (b) outer shelf, (c) inner shelf (bottom of zone C is selected based on 
sequence stratigraphy), and (d) onshore (thick Anahuac shale represents zone C). 

ASSIGNING  THE  4   ZONES  BEFORE DRILLING 

SAND  PRESSURE GRADIENT  IN ZONE  B 

FEASIBLE FORMATION PRESSURE GRADIENT IN  ZONE  B 

PRESSURE GRADIENT  CALCULATION  IN  ZONES  C AND  D. 

SEISMIC  -  PORE PRESSURE  TRANSFORMATION  MODEL IN ZONES  A,B,  C AND  D. 
RT MODEL CALIBRATION – TRIO  FULFILLMENT 
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