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Abstract 

 

Monochromatic and band-limited spherical waves have differing reflection coefficient curves. To facilitate comparison, a new expression for 

monochromatic reflectivity is given in terms of a weighting function. The weighting function approach, developed previously for a specific 

class of band-limited spherical waves (Rayleigh filtered waves), shows explicitly how different plane waves contribute to a spherical-wave 

reflection coefficient. Direct comparison shows that monochromatic waves have oscillatory, non-decaying weighting functions, and thus 

sample a wide range of plane waves. In contrast, typical Rayleigh wavelets produce localized weighting functions. These two behaviors lead to 

reflection coefficient curves, which differ beyond the critical angle. A bridge between these two behaviors is constructed by considering 

unusually narrow Rayleigh wavelets. These show intermediate properties. This study shows 1) a simple and convenient method for calculating 

monochromatic spherical-wave reflection coefficients, and 2) a clearer understanding of how spherical-wave reflection coefficients are created 

from constituent plane-waves. 

 

Introduction 

 

Historically, the most common approach for describing reflectivity of spherical waves in seismic exploration has been through constructing the 

reflection coefficients for a monochromatic source. This approach is due to Lamb (1904) and Sommerfeld (1909) and is described in Aki and 

Richards (1980). Carrying out such calculations for multiple frequencies allows one to obtain the reflection coefficient for a band-limited 

wavelet via an inverse Fourier transform, as has been carried out by Haase (2004). 

 

We have previously presented a direct approach to band-limited reflection coefficients (Ursenbach et al., 2005). This employs the Rayleigh 

wavelet (Hubral and Tygel, 1989), which allows the inverse Fourier transform to be carried out analytically. Only one numerical integral is 

then required to obtain the reflection coefficient for a given geometry. The result is expressed as 

 

                                                                (1) 
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where θi is the angle of incidence, θ is an integration parameter, Γ is an integration path in the complex plane, S0 ≡α / (Dω0), α is the P-wave 

velocity of the overburden, D is the length of the raypath from source to receiver, ω0 is the dominant frequency of the Rayleigh wavelet, and 

Wn is a normalized weighting function, with n a parameter of the Rayleigh wavelet. For Rayleigh wavelets, Wn is an analytic function, which 

can be readily programmed. 

 

In addition to providing a speedy approach to calculating spherical-wave reflection coefficients, the Rayleigh wavelet approach of equation 1 

also provides useful insight into the relationship between plane-wave and spherical-wave reflectivities. The Wn kernel is largest when θ and θi 

are similar, and decays rapidly when |θ − θi| is large. Thus, the spherical-wave reflection coefficient receives contributions primarily from 

plane-wave coefficients near the angle of incidence. Indeed, as S0 → 0, the spherical-wave coefficient approaches the plane-wave Zoeppritz 

result (Ursenbach et al., 2005). 

 

To obtain a similar picture for single frequencies, we first derive an expression for the monochromatic spherical-wave reflection coefficient, 

which is similar in form to equation 1. We then compare monochromatic reflection coefficients to band-limited reflection coefficients, and 

monochromatic weighting functions to band-limited weighting functions. We will demonstrate that the two cases differ significantly, but that 

the band-limited results approach the monochromatic results for increasingly narrow bands. 

 

Theory 

 

Analogous to equation 6.30 of Aki and Richards (1980), the monochromatic potential for a reflected spherical wave may be written as 

 

                                                            (2) 

 

where φ(ω) is the spectrum of the displacement potential,  is frequency, A is an arbitrary scale factor, t is time, p and  RPP are horizontal and 

vertical slownesses  , RPP is the plane-wave reflection coefficient, J0 is a zeroth-order Bessel function, r is the source-

receiver offset, and z and h are the vertical distances from the interface to the receiver and source. To proceed from equation 2 to an expression 

for the spherical-wave reflection coefficient, we follow steps similar to those described in detail in Ursenbach et al. (2005) for the Rayleigh 

wavelet band-limited case.  First, obtain the displacement spectrum from the gradient of the potential parallel to the ray vector at the receiver, 

(sin θi, 0, cos θi), where θi is the angle of incidence. Second, divide this result by the simple displacement spectrum obtained using RPP = 1. 

Third, perform a change of variables for the integration and define sin θi = pα1 and cos θi =ξα1. Fourth, set h = z, and note that z = (D/2) cos θi 

and r = D sin θi (where D = ). Fifth, note that the integrand now depends upon only three variables, θ, θi, and S, where D, S and α1 

appear only in the combination S ≡α1 / (Dω), a quantity which provides a measure of the importance of curvature and spherical effects. The 

result can then be written: 
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We have thus derived an equation of the form of equation 1, and can compare reflection coefficients and weighting functions between 

monochromatic waves and band-limited waves. 

 

Results 

 

We consider a Class 1 AVO system defined in Table 1. We assume a frequency for the monochromatic wave of 100/π Hz (≈ 31.8 Hz), and an 

interface depth of 500 m, so S = .01cos θi. Equations 3 and 4 may then be solved to give the monochromatic reflection coefficient curve, while, 

given an appropriate wavelet, a band-limited result may be obtained using the method of Ursenbach et al. (2005). Recent developments have 

improved this method so that calculations may be readily carried out for Rayleigh wavelets with large values of n, where the Rayleigh wavelet 

is given by w(f) = f
n 
exp[-n(f / f0)] and f0 is the dominant frequency. If f0 is set equal to the frequency of the monochromatic wave, then choosing 

an appropriate set of n values should provide a bridge between monochromatic behavior and that of a typical seismic wavelet. This is illustrated 

in Figure 1a, where the Rayleigh wavelet spectrum approaches a spike as n → ∞. In Figure 1b, we see a corresponding progression in the 

spherical-wave reflection coefficient curves. The monochromatic curve is highly oscillatory just past the critical angle while the band-limited 

solution approaches the plane-wave asymptote much more smoothly. 

 

To understand these differences we consider the weighting functions that give rise to the above reflection coefficients. Figure 2 displays 

weighting functions for the three Rayleigh wavelets and the monochromatic wavelet for θi = 40°. The n = 15 and n = 50 wavelets do indeed 

form intermediates. They decay away from θ = θi, as does the n = 5 wavelet, but their decay is slower and more oscillatory, approaching the 

behavior of the monochromatic weighting function. Thus framing calculations in terms of weighting functions, as in equations 1 and 3, 

provides insight into spherical-wave calculations for different types of wavelets. 

 

Summary and Comments 

 

Monochromatic spherical-wave reflection coefficient calculations have been re-expressed in terms of a weighting function. This weighting 

function depends explicitly on only three variables: angle of incidence, an integration variable, and a sphericity parameter. The latter subsumes 

frequency, overburden velocity and depth. The weighting function is analytic and may be readily programmed in terms of these three variables. 

A straightforward 1-D numerical integration then yields the normalized reflection coefficient. 

 

Calculations with the method have shown that weighting functions for monochromatic wavelets are non-decaying and highly oscillatory. 

Comparing them to a series of weighting functions and reflection coefficient curves for increasingly narrow Rayleigh wavelets suggests that the 



less smooth the wavelet spectrum is, the more oscillatory the weighting function will be, and this will result in oscillations in the reflection 

coefficient curve as well. 
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Figure 1. (a) The spectra of three Rayleigh wavelets. As n increases, the spectrum becomes spike-like, so that its reflectivity behavior should 

approach that of a monochromatic wave-let. (b) The spherical-wave reflection coefficient curves for the wavelets in (a), and the corresponding 

plane-wave curve and monochromatic spherical wave curves. 



 
 

Figure 2. The weighting functions defined at θi= 40° for the wavelets in Figure 1a. Note that the tails of the Rayleigh wavelet weighting 

functions [a) - c)] become increasingly oscillatory as n grows, thus approaching the appearance of the monochromatic wavelet weighting 

function in d). 



 
 

Table 1. Two-layer, elastic interface model employed in calculations. 


