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Abstract

Published analysis of scaling relationships between sediment-dispersal system components imply that reconstruction of the length-scales of
drainage basins and fluvial systems can assist prediction of the dimensions of basin-floor fans. This paper is the first of three to address this
overall goal, and provides a summary reconstruction of mid-Cretaceous to Paleogene Gulf of Mexico (GoM) drainage integration and drainage-
basin scales from detrital zircons (DZs). GoM DZ data include >6000 U-Pb and Pb-Pb ages from ~60 samples of Cenomanian Tuscaloosa-
Woodbine, Paleocene Wilcox, and Oligocene Frio-Catahoula, fluvial deposits: samples were collected across each outcrop belt, from Alabama
to Texas. Complementary DZ data comes from Aptian to Cenomanian fluvial deposits of the Great Plains, the US Rocky Mountain Front
Range, and Aptian-Albian deposits of the Alberta foreland. Collectively, these data show that much of early-mid Cretaceous North America
was part of a continental-scale drainage that originated in the Appalachian-Ouachitas, and flowed north and west across the Great Plains to the
Alberta foreland and Boreal Sea. GoM drainage was restricted to south of the Appalachian-Ouachitas through at least the Cenomanian:
Tuscaloosa-Woodbine fluvial deposits contain no DZ signatures from the Western Cordillera, fluvial systems were of regional scale only
(<<10° sq. km), and the largest system is interpreted to represent a paleo-Tennessee River that discharged to the eastern Mississippi
embayment. By the Paleocene, much of southern North America, from the Appalachians to the Sierra Nevada, was re-routed to the GoM
through a series of major fluvial axes that remain extant today. These included the paleo-Tennessee and its Appalachian source terrain, and an
ancestral Mississippi-Arkansas system with an estimated drainage area >10° sq. km that encompassed the central and northern Rockies.
However, large axes were also located farther west in Texas, and included an ancestral Colorado-Brazos system with headwaters in the Sierra
Nevada, Sevier orogen, and Laramide Rockies, and an ancestral Rio Grande with headwaters in the Mexican Cordillera: the paleo-Colorado-
Brazos axis had an estimated drainage area >>10° sq. km, and length scales >2000 km. Beginning in the Oligocene, far western sources were
tectonically dismembered, and GoM drainage areas extended no farther west than the eastern Laramide Rockies, heralding development of the
Neogene to present continental divide.
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GULF OF MEXICO DRAINAGE INTEGRATION

Summary of 15-Order Scaling Relations
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Scaling relationships between drainage-basin area, length of fluvial system, thickness of fluvial sand bodies,
length of basin-floor fans, and basin-floor fan area

Drainage basin

Fluvial system [ Fluvial sand body | Backwater Fan Length | Fan Width Fan Area
area (km?) length (km) thickness (m) Length (km) (km) (km) (km?)
Small 10,000 75-100 5-7 10-30 <25 25-50 <1000
Moderate 100,000 750-1000 10-15 50-100 100-200 100-200+ 100,000
Large 1,000,000+ 2000-4000 25+ 300-500+ 500-1000 500-1000+ ( 10,000,000

after Somme et al. (2009) and Blum et al. (2013)
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Modern North American Drainage and Sediment Routing




GULF OF MEXICO DRAINAGE INTEGRATION
Modern Gulf of Mexico Sediment Dispersal System
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GULF OF MEXICO DRAINAGE INTEGRATION

Gulf of Mexico Basin-Fill Stratigraphic Framework
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GULF OF MEXICO DRAINAGE INTEGRATION
Gulf o Mexico Sediment Input — Long-Term Fluvial Axgs
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Detrital Zircon Provenance and Geochronology Studies
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GULF OF MEXICO DRAINAGE INTEGRATION

Gulf of Mexico Coastal-Plain Detrital-Zircon Samples
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GULF OF MEXICO DRAINAGE INTEGRATION

DZ Signatures — Cenomanian vs. Paleocene Fluvial Axes
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GULF OF MEXICO DRAINAGE INTEGRATION

Longitudinal Change in GoM Cenomanian DZ Signatures
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GULF OF MEXICO DRAINAGE INTEGRATION
Longitudinal Change in GoM Paleocene-Eocene DZ Signatures
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GULF OF MEXICO DRAINAGE INTEGRATION
Longitudinal Change in GoM Oligocene DZ Signatures
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GULF OF MEXICO DRAINAGE INTEGRATION
Cretaceous to Paleocene Drainage Reorganization
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Predicting Scales of Basin-Floor Fans
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Predicted Scaling of Basin-Floor Fans to Drainage Area

Cenomanian vs. Paleocene
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GULF OF MEXICO DRAINAGE INTEGRATION
GoM Cenomanian Drainage and Sediment Routing




GULF OF MEXICO DRAINAGE INTEGRATION
GoM Paleocene Dramage and Sedlment Routmg
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