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Abstract 

 

Carbonate reservoirs are characterized by significant heterogeneity at the regional to inter-well scale. Reservoir quality 

predictions (RQPs) based on geostatistical and object-based modeling approaches contain additional uncertainties in carbonates 

compared to siliciclastic reservoirs. Process-based, forward stratigraphic modeling (FSM) offers high potential for improved 

RQP with reduced risk in exploration and improved recovery in production. FSM tools and workflows have been used for RQPs 

in the Arab-D reservoir (Lower Jurassic) in the Ghawar field. Data quality and coverage are exceptional with wells spaced at 

short distances. While effective porosities and permeabilities are generally high, marked lateral and vertical heterogeneities 

occur in this homoclinal carbonate ramp setting. They are related both to depositional facies with small-scale paleogeography 

and diagenetic overprint, e.g., dolomitization. FSM for RQPs in the Arab-D has been performed at a regional scale (270×180 

km, cell size 2,000 m, time step 5 ka). Models are calibrated to 11 key wells and detailed depth/thickness grids from several 

hundred wells. The model has been tested by comparing virtual wells generated from the FSM to real-world wells, which were 

not included in the input database. Both Navier-Stokes/Lagrangian and diffusion-based approaches have been applied. Over 

reservoir thicknesses of 1–3 m, FSM correctly predicts (textural) porosities with errors of ±3 pu. Modeled depositional facies, 

e.g., skeletal-oolitic grainstone/rudstones and stromatoporoid packstone/ grainstone/boundstones with high porosities closely 

match core and log data. Vertical stacking patterns, e.g., parasequence sets and high-frequency sequences at the scale of 5–10 m 

resolution are predicted according to the actual subsurface data. In shallow subtidal to peritidal reservoir-prone settings, 

thickness uncertainties range between ±4 and ±10%. In more open marine settings (outer ramp to basin), uncertainties are higher 

and may reach up to ±28%. Input data and processes in these settings still require optimization. Current FSM studies focus on 
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the field to inter-well scale based on a rigorous sequence stratigraphic framework. They reach the resolution of individual flow 

units (parasequences, shallowing/deepening upward cycles). FSM may be coupled with other modeling approaches, e.g., 

reactive transport modeling for diagenesis and surfaced-based modeling for fluid flow. 
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Presenter’s notes: The Arab-D reservoirs developed on the very wide continental shelf of the western Tethys. This highly detailed 

paleo-geographic map shows a highly complex pattern of oolitic shoals, stromalgal mounds, intertidal flats and shelf-interior basins. 

Maximum water depth on the shelf reached a few tens of meters, possibly up to 50-70 m in the intra-shelf basins. 

Reservoir Stratigraphy 

• Arab-D Reservoir 
• Homoclinal carbonate ramps 

• Shelf-interior basins 

• 6 zones, 2 major reservoir zones 

• 14 standard lithofacies types 

• FSM: 5 combined lithofacies units 

• High-resolution sequence stratigraphy 

• FSM: parasequence (set) resolution 

• Outcrop-reservoir analogue study 

• See oral presentation: Jacquemyn et al. 
Wed, 06/03, 10:50 am, R. 605/607 
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Presenter’s notes: The Arab-D Formation is subdivided into six zones, two of which are the most important, thickest reservoir zones 

with excellent quality. Fourteen lithofacies types are subdivided. They have been lumped to five combined lithofacies associations for 

the sake of acceptable computing times. Reservoir architecture and internal heterogeneities have been studied at the resolution of 

single flow units and para-sequences. The resolution of specific in this presentation is reduced to para-sequence set resolution. 
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Presenter’s notes: This is a generalized cross section through the Arab-D ramps. The most proximal environment in this model is 

oolitic shoals with excellent reservoir properties. Lindsay: skeletal-oolitic grainstone, mud-lean packstone, and some mud-rich 

packstone 
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Presenter’s notes: Basinward follow Cladocoropsis and stromalgal mounds. Cladocoropsis are mound-building algae, specifically of 

Siphonocladacaeae. 

Lindsay: stromatoporoid-red and green algae-coral rudstone and float-stone 

Lindsay: Cladocoropsis rudstone and floatstone 
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Presenter’s notes: The distal part of the middle ramps features bioclastic and intraclastic Pack- to wackestones, some grainstones. 

Lindsay: bivalve-coated grain-intraclast rudstone and floatstone 
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Presenter’s notes: Finally, bioclastic mud- and wackestone were deposited on the outer ramp, the shelf interior basin. 

Lindsay: micritic to very fine-grained deposits 
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Presenter’s notes: Input parameters. Let us look at selected input parameters for the reservoir modeling. Cyclostratigraphic analyses 

provide proxies for sea-level changes. While these analyses have their limitations, they provide the relatively best data on short-term 

and long-term sea-level fluctuations. 
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Presenter’s notes: The maximum amplitude over 1 Ma reached 20-25 m. Although the Arab-D was deposited on a wide continental 

shelf top, small-scale lateral and temporal changes in subsidence controlled the small-scale paleogeography of the Arab-D shelf. 

Variations in subsidence reached rations of somewhat over 1:2. Syn-sedimentary faulting is largely absent in the AOI, gentle flexures 

prevail. Variations in subsidence are related to salt withdrawal in the subsurface or differential compaction. 
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Presenter’s notes: The original model considers 6 lithologies, 5 of which you will see in this model. Production rates vary in time and 

are depth- energy- and facies-dependent. The Arab-D was a high-energy environment with major storm activity and a fairly deep 

normal wave base of 10-15 m. The chronostratigraphic framework of the Arab-D is based on biozones tied to Tethyan time charts and 

sequence stratigraphic schemes. The overall duration of the Arab-D was in the order of 1 My. 
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Presenter’s notes: Forward Stratigraphic Modeling. We have used two modeling approaches for forward stratigraphic modeling and 

reservoir prediction. Diffusion based, represented by Dionisos (IFP) and Navier-Stokes, represented by Sedsim (originally from 

Stanford University and CSIRO). This presentation will focus on the (Presenter’s notes continued on next slide)  
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(Presenter’s notes continued from previous slide) 

 

 results from diffusion-based modeling. 

 

The reasons this are entirely unrelated to the quality of the software or the predictions achieved by them. The area of interest covers up 

to 270x180 km (field scale in this case). 

Minimum time step is 2 ky. Maximum cell spacing is 1 km. Input and calibration data come from nine key well which were cored 

throughout the Arab-D and additional data from other well logs, seismic data and climate models. 



 
 

Presenter’s notes: This the visualization for general depositional environments, represented by water depth. Reservoir zones to the left, 

AOI 270x180 km. Original resolution of the model has been reduced to a grid size of 7 km for presentation. 
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Presenter’s notes: The four movies show the development of the Arab-D in the Area of interest for four selected lithologies. Grey 

colors indicate low amounts of the specific lithofacies, red colors high amounts. Upper left: oolitic grainstones. Upper right: 

stromalgal mounds. Lower left: bio-/intraclastic Wacke- to Packstones. Lower right: bioclastic Wacke- to Mudstone. 
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Presenter’s notes: This is the reservoir quality prediction for the Arab-D. Let me stress that porosity is textural porosity, not post-burial 

true porosity including diagenetic overprint and dolomitization. This requires integrated forward stratigraphic and reaction-transport 

modeling for cementation and dolomitization. 
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Presenter’s notes: Verification and reservoir prediction. Forward models have to be tested against their input data - in this case, it has 

been achieved by comparing virtual wells from the model with actual well data. Predictions have been blind-tested – in this case, it has 

been achieved by NOT including specific actual wells in the input database  (Presenter’s notes continued on next slide)  

Virtual VS Real-World Wells 4. Verification & Reservoir Prediction 
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(Presenter’s notes continued from previous slide) 

 

 and comparing the prediction form the model with these wells. The upper graph shows a cross section through the forward model in 

terms of porosity, lithofacies and thickness lines are time lines. The lower graph shows thicknesses (left) and deviations between 

actual and modeled thickness (right). Blue lines: actual thickness. Red line: modeled thickness. Green line: deviation in percent of 

actual thickness, up to plus/minus 10% in green, up to plus/minus 15% in orange, higher deviation indicated by red dots. This 

verification has been performed for each reservoir zone and is a representation of the reliability of the forward stratigraphic model. For 

reservoir Zone 4: very high reliability 



 
 

Presenter’s notes: For reservoir Zone 3B: very high reliability, slightly decreasing towards the central basin. 
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Presenter’s notes: For reservoir Zone 3A:  high reliability, decreasing towards the central basin, possibly related to mass transport. 
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Presenter’s notes: Zone 2B: the lower most important reservoir zone, high reliability across the shoal to basin transition. 
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Presenter’s notes: Zone2 2A+1: the upper most important reservoir zone, high reliability across the upper and middle part of shoal to 

basin transition, decreasing towards the deeper shelf-interior basin 
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Presenter’s notes: How reliable are predictions at the current point of time. The graph shows a blind test between a virtual well from 

the model and the corresponding actual well which wqas not included in the database. I cannot include high-resolution numerical 

values in this presentation, but let us focus on trends: First - in terms of  (Presenter’s notes continued on next slide)  
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(Presenter’s notes continued from previous slide) 

 

 lithofacies and stacking patterns -parasequence sets-. Parasequence sets are adequately predicted in term of thickness, lithofacies and 

stacking patterns, usually shallowing upward in this case. Second – in terms of porosity, but keep in mind this is textural porosity. In 

fact porosity is very well predicted up to plus/minus 3 pu in the most important reservoir zones 2A and 2B. 



 
 

 

Presenter’s notes: Conclusions. Which are current challenges in the development of process-based modeling for reservoir quality 

prediction?  (Presenter’s notes continued on next slide) 
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(Presenter’s notes continued from previous slide) 

 

1. Integrate FSM and RTM. This is currently achieved in a predominantly manual, stepwise fashion in industry research units. 

However, this approach is yet insufficient for E&P units. 

 

2. Calibrate and verify modeling results with seismic data. This is currently achieved in terms of laps, reflector configurations and 

geometries. However, no calibration or verification to amplitude and seismic attributes is performed so far. 

 

3. Uncertainty and sensitivity modeling. This is currently performed with a manual or semi-automatic approach. However, more 

advanced automatic approaches are required for assessing uncertainty and risk in E&P units. 

 

4. Finally, multi-processor and cluster support. This is definitely required in order to compute forward models with high spatial 

and temporal resolution and comprehensive depositional and diagenetic parameter sets. 

 



Achievements 5. Conclusions 

1. GDE prediction for carbonates (& clastics) 

2. Thickness prediction to < 10-150/0 

3. Stacking patterns at PS to PSS resolution 

4. Textural porosity prediction to 3 pu 




