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Abstract 

 

The Vaca Muerta Formation in the Neuquén Basin, Argentina, is an emerging resource play containing shale oil and gas in Late Jurassic to 

Early Cretaceous foreland basin strata. Like many black shales, it is characterized by the presence of abundant bedding-parallel microfractures 

within the organic-rich matrix. Sub-vertical fractures are also observed across the studied section, adding complexity to characterization of the 

mudrocks. The Lower Vaca Muerta is composed of alternating mudstones-wackestones, bioclastic siltstones, carbonate mudstones, and 

bentonite facies. The mudstone-wackestone facies is characterized by an impermeable, wavy, clay-rich matrix that encompasses the kerogen 

grains. The concept of bedding-parallel microfracturing has been related to thermal maturation of kerogen in organic-rich black shales. Within 

the oil maturation window, overpressure at the Lower Vaca Muerta interval is correlated with significant total organic content values (up to 10 

wt%). These conditions eventually dominate the mechanical behavior of the formation. Observed microfractures are filled or partially filled 

with calcite cement. Thus carbon and oxygen stable isotope chemostratigraphy together with thin-section petrography aid in establishing the 

paragenetic sequence, and ultimately identify the origin of the aqueous and hydrocarbon fluids. In addition, microfractures may have the 

potential to contribute to overall effective permeability of the matrix depending on their length, aperture orientation, and connectivity to larger 

fractures. Thus, microfracture characterization and their relation to facies is key for identifying the sweet spots for future production. 
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1. The Neuquén Basin 
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2. Stress Evolution in the Basin 



Stress Evolution in the Basin 

 
Extensional faults and 
major depocenters in the 
embayment 
 
Pre-Cuyo group half-
grabens have three main 
orientations   

After Mosquera and Ramos 2006 



 Rotation of the convergence 
vector from N40°W to 
almost orthogonal between 
the Pacific plates and South 
America occurred during the 
mid-Cretaceous 
 

 Miocene: more orthogonal 
vector (compression) 
 

 Pliocene: widespread 
extension   

After Mosquera and Ramos 2006 

Stress Evolution in the Basin 



Fault and Fracture Strikes 

Sub-Vertical Fracture Strike NW-SE Fault Strike 

Log  depth Dip Azimuth 
3098.736 72.47 N 87.81 
3099.045 76.27 N 85.72 
3117.548 71.96 N 278.39 

Vaca Muerta Top  

(Modified after Franklin, 2015) 



 3. Burial History 



Vaca Muerta Maturity Map 

(Modified after Legarreta & Villar, 2011) 
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Thermal History 
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 4. Fracture Quantification and Description 



Well 1 

18m core from  Lower Vaca 
Muerta Fm. 
 
Significant overpressure 
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(Micro)Fracture Quantification 

 
155 Horizontal calcite-filled microfractures  (Microfracture Density: 8.61 Microfrac./m) 
 
22 Sub-vertical calcite-filled fractures (Fracture Density: 1.22 Frac./m) 
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1. Horizontal Microfractures - Core 
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Horizontal Microfractures 

Carbon Map OM Map 
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2. Sub-Vertical Fractures -Core 
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5. C and O Stable Isotope 



δ13C Stable Isotope 

Preferentially 
partitioning of light 
isotope (12C) 

Positive excursion 
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Water column: 
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Mean Water Composition 

Average δ18O water 2.11 ‰ SMOW  

Calcite - Water Fractionation 

BHT 96 °C  

Modeled Tmax 125 °C 

103 ln α = 2.78 x 106 T-2 -2.89 (O’Neil et al., 1969) 



Calcite in Eq. with Water 
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Surface Temperature range for calcite precipitation: 20-25 °C 
Average δ18O water 2.11 ‰ SMOW 

  δ18Ocal PDB  

0.7 ‰ & -0.33 ‰ 
Average: 0.19 ‰ 

Different from measured 
values -12.42 ‰ and         

-12.29 ‰  

Calcite - Water Fractionation 
103 ln α = 2.78 x 106 T-2 -2.89 (O’Neil et al., 1969) 



Isotope Data 
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Cement type 
• Sub-vertical: equant calcite  
• Horizontal: equant and fibrous 
• OM present in both types of fractures (Qemscan) 
• Precipitation deep in the burial, reducing environment with significant 

Mn2+ and Fe2+ (CL) 
 

Stress regime and fractures 
• Strike of sub-vertical fractures on the core almost perpendicular to 

regional trend  
 
Basin modeling 
• Modeled T max 125 °C   
• Onset of HC generation in Late Cretaceous (68 m.y.) 
 
Isotopes 
• Calcite for horizontal and vertical fractures precipitated from same fluid 
• Calcite extremely diagenetically altered with burial  
• Depleted C values, inherited from the matrix  

Conclusions 
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