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Abstract

SRK Consulting has undertaken many unconventional gas estimation projects in Australia plus China, USA, Canada, Botswana and South
Africa. Our experience with projects indicates many potential pit falls in the estimation of both Resources and Reserves can lead to either
overstating or underestimating potential. Geology is a significant control and the context of gas estimations is critical to ensure their delivery
as economic Reserves.

SRK Consulting has experience of coal seam gas (CSG/CBM) Reserve and Resource in most eastern Australian basins and we have observed
that the impact of coal quality and depositional environments are commonly underestimated and some potential gas upside is not necessarily
captured from other aspects associated with coal seam gas analysis. The coal seam environment is complex comprising fluvial deposition in
upper to lower delta plain settings where the complex interaction of sedimentary deposition is compounded by variations relating to the
original peat swamp environment.

The nature of the peat-forming environment and the genesis of the contained methane in shallow CSG reservoirs often results in highly
variable gas saturations. By understanding these processes and identifying the geological features responsible for high-frequency variations in
gas contents, exploration can be better targeted. Individual coal seam reservoirs typically split and coalesce within hundreds of metres but
seam characteristics such as ash content can also vary over similar distances. The thin nature of the CSG reservoir also provides the potential
for common relatively small faults (<5 metres) to fully displace the coal seam and effectively compartmentalise the reservoir.

It is important to have a good understanding of the origin of the methane and how it has been stored in the reservoir. SRK has undertaken
several projects in the Surat Basin where shallow coals are often highly gas productive. Deeper coals can be significantly undersaturated
resulting in lower gas contents and significant dewatering requirements to achieve first gas. Lack of meteoric influx due to geometry and
permeability barriers can result in minimal biogenic gas enhancement resulting poor permeabilities that require lateral wells to achieve
reasonable productivity.
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Topics to Cover chdne,

* Unconventional Gas and Coal

* Fracking
e Associated Gas and Reserves |
e Surat Basin pump

 Clarence Moreton Basin
e Bowen Basin
e The Place of Unconventional Gas in the World


http://www.google.com.au/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&uact=8&docid=YlYBYFLjmfWpIM&tbnid=3mAxhkCXw05tPM:&ved=0CAUQjRw&url=http://www.frost.com/prod/servlet/market-insight-print.pag?docid%3DBNNN-57B6MD&ei=kS1PU7KhMMmAlQWXooC4Ag&psig=AFQjCNGZ0lBp515wwAXUDPI5Yun7qmZ7xw&ust=1397784100619275

Coal Seam Gas is produced from coal and storage is
dominantly adsorption

Shale Gas is derived from petroleum source rocks

Shale (Cil & Gas)
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“‘Unconventional”
Natural Gas Reservoirs

Geologically complex and low permeability (<0.1 md normally)
gas reservoirs that require special (non-standard) evaluation
and technology.

Reservoir Spectrum
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o | Imbibition is a function of Coal Type
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The curves suggest a net hydrophobic coal, i.e. the gas is the preferred wetting phase.
The water will, therefore, tend to reside in the larger openings within the matrix and
inhibit migration of the gas which exists in the smaller interstices. Hence, the gas will
not become mobile until the water saturation has fallen significantly below 100%. This
saturation explains why considerable volumes of water may be produced from a
borehole before gas flows appear.



Saturated Coal Reservoir Undersaturated Coal Reservoir
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Hydraulic Fracturing Issues - Social License

Engelder, AAPG Explorer (2014)
Identified 6 Key mistakes made by companies
Q Failure to establish baseline water chemistry
before drilling campaigns

Traditionally oil wells were first drilled in
places where oil was leaking to the surface, gas similarly
leaks

It is common for water wells to produce gas
(spring water commonly effervesces)

Q Use of cemented casing to cover the 1.) '
reservoir levels is important =

1)
a Use of air drilling to penetrate reservoirs in E\T t R A D SAN
shallow aquifer settings

Q Supporting Energy Policy that allowed
hydraulic fracturing companies to keep their additives
proprietary

a Disposing of flow back in large enough
volumes to trigger earthquakes

Q Water management associated with
potential open pit leakage
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Common application

Compound*®

Acids

Purpose

Helps dissalve minerals and
initiate fissurein rock (pre-fracture)

Swimming pool ceaner

Glutarald shyde

Elirninates bacteria in the water

Disinfectant; Sterilizer for medical
and dental equiprnent

Sodium Chloride

Allows a delayed break down of
the gel polyrner chains

Takle Salt

M, n-Dirnethyl formarmide

Preventsthe corrosion of the pipe

Used in pharrnaceuticals, acrylic
fibers and plastics

Borate salts

Maintains fluid viscosity as
temperature increasas

Used in laundry detargents, hand
soaps and cosmetics

Palya crylamide

Minimizes friction between fluid
and pipe

Water treatrnent, soil conditioner

Petroleurn distillates

"slicks" the water to minimize friction

Iia ka-up rermnower, laxatives,
and candy

Thickerner used in cosmetics,

Guar qurm Thickensthewater to suspend the sand | baked qoods, ice cream, tooth-
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Citrie Acid Prevents predipitation of metal cxides Food additive; food and
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Allows the fissuras to remain open
so the gas can escape

Drinking water filtration,
play sand

Ethylane glycol

Prevents scale d eposits inthe pipe

Autamaotive antifresze househ old
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Produced gas compesition, fraction
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LOSS OF METEORIC RECHARGE ON INDIVIDUAL SEAMS
= INFLUENCE OF FAULTING PARALLEL TO SUBCROP

COAL SEAM A - POTENTIAL TO REMAIN HYDROGRAPHICALLY
CONNECTED TO SUBCROP

COAL SEAM B - LOSES CONNECTION TO SUBCROP
(INHIBITS BIOGENIC ACTIVITY)

POTENTIALLY LOWER GAS IN SEAM B COMPARED TO SEAM A
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Changes in gas characteristics with depth — Surat Basin

Reserve estimation and the influence of coal seams on coal seam gas productivity
Michael Creech, Bruce McConachie, SRK Consulting (AusIMM Bulletin, Feb, 2014)



. -':?Maxlmum

Maximum

'ihEstlmate of genel‘ﬂl

permeablllty (mD)

;:_i__-:t;c':a_"cihpf _’_;'_dlstance from'
= = | subcrop (km):
Surat Basin 20-30

Undulla Nose 30-40
Bowen Basin 10-15
Fairview 10-15
Sydney Basin 10-15

Newcastle Coalfield 5-10
Gunnedah Basin 15-20
Ordos Basin, China 510
San Yuan Basin, USA 50
General 10-15

7-800
800
5-600

1000 (steep
dips)

3-800
(variable)

4-500
6-800
6-700
1500
6-800

-. ;.-'dep'th_'(lﬁ) |

<100
100s
<50

<100

<10

<5

<10

<b

100s

Driven by permeability

Table 1. Influence of biogenic recharge - depth and distance from subcrop.

Reserve estimation and the influence of coal seams on coal seam gas productivity
Michael Creech, Bruce McConachie, SRK Consulting (AusIMM Bulletin, Feb, 2014)
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Well locations in the Surat Basin
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LUDWIG 1
Company: Santos Limited
Well Nam e: L udvig1 WELL COMPLETION REPORT
Job Number: 113206
Date: 7/07/2008 PL 17 - QUEENSLAND
613C Methane “w . .
Seam Name Runt Run?  Average Stddev Weatherford reported “A total of five drill
stem tests (DSTs) were run over the
Upper Juandah -541.5 -54.1 -543 0.28
Lower Juandah 519 520 520 007 relevant coal seams. Water but no gas was Prepared by:
Taroom -98.2 -38.0 -58.1 014 recovered to surface during any of the  Consult
DSTs indicating that the Upper Juandah, "Revtewed By:
- ~ Lower Juandah and Taroom coals are A. Bk
d—— MIX ——p [hermegenic  ynder-saturated with respect to gas at this For
& location”, STE %S %gng;(?%?
# Level 14 Santos Honse
4 60 Edward Strest
Brishans (14 4000
-80%. -60%. -40%. -20%. October 2008
PO Do J002, oy HlL QU 4004
Phore: (07 2838 6 22 Fa: poF) 2928 32
I
Desorbed gas samples selected by the client were used for isotopic analyses. The results of -

the analysis for 613CH4 suggest a mixed biogenic and thermogenic origin for the gas in the
coals which is common for sub-bituminous to bituminous ranked coals.
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ACS Laboratories Pty Ltd Ludwig-1
GAS DESORPTION DATA SUNMDMARY 5 o Paramsetirs
. Gasadsorbed jintal gas ¥yiahs, d
WELL NAME: Ludwig 1 Upper Juandah . . ffotal gas) b daf
‘quilbrium ¥, jahs) 1751
SAMPLE DETAILS CAN DETAILS DESORBED GAS P, {ais T
SAMPLE NO 5 CAN NO D USEM LOST G AS (sec) 2374 RESIDUAL (A (sco/g) Garcatestat Lo, 019
SE AN N AME Wprrangh  CAN LENGTH (m) 0.5 USEM LOST G AS (sce/e) TOTAL RAW GAS (scciz) T8l '
DEFTH FROM () 1002 .40 CAN WEIGHT (kg) 3377
DEFTH TO (m) 1002 90 CAN +3AMFLE WT (kg) 5.22% DESORFTION TEME (°C) 427 DAF LOST GAS (scofg) 021 s (Y
THICKNESS (m) 0.5 SAMPLE WEIGHT (kg)  1.851 DAF DESORBED GAS (scofd) 210
COALLENGTH(m) 0.5 CAN VOLUME (cd) 2200 RAW DESOREED GAS (scd) 2935 DAF Q1 + Q2 (sco/g) 231
COAL WEIGHT (k) 1351 SAMPLE VOLUBME(eg) 1559 RAW DESOREED GAS (scefg)
CORE DIAM (mm) 63 CAN VOID SPACE (of) 641 DAF RESIDUAL GAS Q3 (scofd) 009
SAMPLE TYPE Core ESTIMATED VOID (cd) 0 RAW TOTAL DESOREED (scoig) 1.74 DAF TOTAL GHAS Q14243 (scoig) 2.40 M Rl m
CORE DETAILS Date Tome COAL ANALYSIS DATA DESORPTION TIME GAS ANALYSIS (Air-Free)
CORE PENETRATED  5SA32008  13:20:00 Ealy Late
CORE LEFT BOTTOM 5432008 153000  ASH% 05 Dys  CH4(H 95564 % 16
CORE AT SURFACE 5432008 154800  VOLATIEMATTER % 41 ON TEST 758 C2HE (% 0.0z 00z
COALIN CANISTER 5432008 160500  NHERENTMOBTURE% 40 63% Q2 6.4 COZ (3 034 066
CORE ON TEST 5132008 16:08:00  FIXED CARBON % 344 63% Q1+02 53 M2 (%5 400 316
TIME ZERO 5432008 15:39:00
LOST GASPLOT DESOREBED GASPLOT
100 T T T T 12
504 LostGas(scc)= | 2674 s’ 16
o [ E—
_ I
] & 14
% _spiln il o2 o3 nl4 ns/nﬁ nl7 i il 5,12
H 81 ]
& -100 ®
=
T -150 T 08 /
£ £oag 1
8 200 & / Desorhed Gas (sce/g) = 1.59
L]
a Q04
_250
0z
-300 o
-350 o 10 20 30 40 50 600 70 a0
Square Root of Time (Hrs) Time (Days)

1132-06 Ludwig-1 Weatherford Laboratories

ABN: 81008 273 005
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Figure:5.~DH-54.--Castor-2-

Seam-6607m.-1 Tectonic environment at time of cleat
Orthogonal-cleat-system-is-  Tormation: Maximum and minimum horizontal
present-but-face/butt- stress magnitudes near equal and azimuths
relationships-are-not- interchange .

consistent.q] o .
David Titheridge

“N-S” cleats-are-A,-B,-C,-D,
E.---“E-W"-cleats-are-
F,G,H.--F-and-G-abut-A,-
however-A-abuts-H,-and-B-
abuts-F-etc.q

Photo:--SV4084801]

“N-5"face<leatsfilled with-pink-brown-lay]

“E-W"-butt-cleatsfilled-with-whitecalcitey]

calcited]

Distinct-orthogonal-face-and-butt-
cleat.~Face-cleats-clay-filled,-butt-
cleatsfilled-with-calcite-or-no-fill.-
Photo:-SV408268.9]
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Fault definition by synthetic generation and comparison
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Fault mapping from 3D seismic data in the southern Bowen Basin




Well breakout plots across Bowen Basin 3D seismic area
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Katrina
Evaluated safely under the Coal
Legislation for $400k/drillhole



* These variations present a significant geological risk to exploration and field production
estimates if not understood and quantified. There is a significant contrast between
borehole spacing that is considered adequate for CSG reserve estimation and for coal
reserve estimation:

e Qil and Gas — Pilots up to 7 km apart, supportive boreholes at 1-2 km spacing.

e Coal — Points of Observation at 1km to 500m apart, supported by chip holes at half that
distance to confirm seam continuity and correlations.

e This contrast in data density may be interpreted to suggest that CSG operators may
often be blind to high frequency variations in gas saturation and therefore production.



U.S. Crude QOil Production and Imports
U.S. field production of crude oil, 1860-2013 1 |
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http://aleklett.files.wordpress.com/2012/11/shales_oil_usa_atkins.jpg

Unconventional Gas
and Oil Production

Where did it come from:
Its always been around but uneconomic or
unrecogmised

Where is it going:
Further than you think
The cost curve is the key

Many basins exhibit the requirements
for unconventional gas development

Example Generated Revenue From Each 1 mmscl

Wet shale gas

CBM/CSG

U.S. Crude Oil Production versus Hubbert Curve

M- W
, \ f Recovery 30%
2 rﬁ'ﬁ fl I \
4” )

o
1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

——U.5. Production (Source: U.S. Energy Information Admi nistration)

—— Hubbert Curve
24
s prodqcm:ln N Production
in the Gas
coterminous US
{trillion cubic .
feet per year) Mismatch
8-
- Hubbert's estimate
1 | | L I J

10900 1925 1950 1975 2000 2025 2050 2075

Comparison of 1956 Hubbert's prediction of US natural gas production
with actual natural gas production data showing a significant mismatch. Hubbert's
ariginal curve in 1956 was drawn by hand (after Deming (2000)"). (Data: production
from EIA and curve from Hubbert (1956)")
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Discovery Utilisation (PEAK OIL) '
Hubbert's Concept

Economic discoveries and economic utilisation

1.2 TOBACCO
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Curve of world ail praduction during 1000-3000 years (by Li Guoyu).

Graph of world oil production, with postulated production up to the third millenium.
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Enormous volume of unconventional HCs Global Oil and Gas
now recognised . .
Discovery and Production

| What's actually occurring |

Areas are equal Changing economics drives innovation,

Actual _— ) . . .
Discoveries < increased recoveries and substitution
Includi i i .
BT Multi Peak Production Curve
especially
Unconventional HC'’s - Akl /
~
4 \ - -~
/ A Y RARN
Recognised ARoODYCTIO)) §\
Discoveries / \
/ LY 3 L
_ Actual Utilisation \

The world is about here
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ir Trend 74 DANIEL O'SULLIVAN

0il discoveries Dig:cgueiy ) ,_/ g 0il production «“ BI k G Id”
inthe 31 ' 3 inthe ac o or
coterminous US Production coterminous US “ ~ »
it il Devils E t
(hillion barrels] (bilion brels ev. S xc re m e n
per year)
1F 11 ¢
|
R R R
000 190 190 2000 J
o _ BLACK GOLD, PAPER BARRELS u) f AHKh HRHR AKKS
Peak in 1935 of oil discoveries in the US lower 48 states and AND OIL PRICE BUBBLES S, st o s e
corresponding peak in US lower 48 state oil production in 1970, Note: a similar
analysis and figure s presented by Laherre.* (Data: production, EIA; discovery,
Klett (2003)") <

OIL PANIC AND
THE GLOBAL CRISIS iyt o v,

The prophetic bestseller— now the story of owr daily lives Tw | L | G H T Eng[gy He‘mluuu“ a"d &M &:f:’ *&t
Predictions and Myths  Changed the World Syt S St

- AAULE RUSSELL GOLD
HUBBERT'S PEAK ) DESERT

THE IMPENDING WORLD OIL SHORTAGE
- THE COMING
SAUDI OIL SHOCK
AND THE WORLD ECONOMY

ENI

Steven M Gorelick


https://secure.metafoundation.org/Merchant2/merchant.mvc?Screen=PROD&Store_Code=META&Product_Code=twilight
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Wl u SRK Recent Unconventional Project
E ! experience in Shale Gas,
Coal Seam Gas and Tight Gas

iﬁ i' Australia >15 projects

China 3 projects

| -1 USA 1 project
!_ |i 4 Canada 1 project
3 - Botswana 1 project
South Africa 1 project

Thankyou for your attention
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Petroleum Frontier Exploration Services, Basin Studies, Resources &
Reserves, G&G, M&A, DD, IPO’s, Conventional & Unconventional (Shale
& CBM) Hydrocarbons, Hydrogeology and EIA.

Our global experience gives you expert, integrated solutions on every
phase of your project worldwide with 40 offices.

Brisbane brisbane@srk.com.au +61 7 3054 5000

Perth perth@srk.com.au +61 8 9288 2000

WWW.Srk.com.au
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