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Abstract 

 

Estimation of hydrocarbon compositions (GOR, CGR, and gas wetness) is critical to appraise unconventional reserves and to determine the 

production strategy. Unfortunately, estimation from basin modeling is challenging because it relies on a detailed and accurate description of 

hydrocarbon generation and migration processes. Based on state of the art knowledge obtained by recent exploration and production in shale 

plays, we have developed a practical model to predict the hydrocarbon compositions in shale plays. In this model, we applied a compositional 

reaction network for hydrocarbon generation. The compositions include specific gas components (methane, ethane, propane, butane, and 

pentane isomers), light oil (C6-C14 hydrocarbons), and heavy oil (C15+ hydrocarbons, resin, and asphaltene). The precursor fraction of these 

components and the kinetic parameters of precursor cracking are calibrated by the laboratorial high-pressure pyrolysis of the source rock in 

closed reactors. The retained and expelled hydrocarbon amounts are modeled by coupling the hydrocarbon generation and expulsion processes. 

The generated/cracked amount of hydrocarbons and their precursors are calculated from the retained precursor amount and temperature-

dependent kinetic parameters. Hydrocarbon expulsion occurs when the retained hydrocarbon exceeds the storage capacity. The storage capacity 

is determined by pore volume, surface area, fluid density, and adsorption affinities; whereas the fluid density is determined by fluid 

composition, pressure, and temperature. Thermal history, pore volume, and pressure history are modeled separately as input. The expulsion of 

oil and gas is assumed to be through microfractures as Darcy flow. Resin and asphaltene components have such a high viscosity that they can 

only migrate when dissolved in oil. This mechanism brings about the compositional fractionation in oil during expulsion. The concentrations of 

mobile species in the instantaneous expelled fluid are proportional to the concentrations in the residual fluid. Retained hydrocarbons crack with 

increasing maturity (secondary cracking). Field data indicates that secondary cracking under geological conditions is self-accelerated, and the 

products are more enriched with methane than the laboratorial products. The model results are consistent with the production data from 

different shale plays, and provide details to help understand production behavior of tight reservoirs. 
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Motivation

• To improve the estimation on hydrocarbon composition in 
unconventional resources

• Gas-to-Oil ratio (GOR) 

• Gas composition (wetness or BTU)

• To optimize hydrocarbon generation parameters for basin modelingTo optimize hydrocarbon generation parameters for basin modeling
– Minimize the uncertainties (esp. in gas window)
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Scope of this work

• Application of constraints from field data
– RockEval HI with respect to Ro: 

Residual hydrocarbon generating potential  source rock thermal maturity
– GOR & gas wetness with respect to Ro:

Oil/gas composition  source rock thermal maturity

• Detailed generation / expulsion processes

Kerogen Source rock

Oil

Oil 
Generated

Gas 
G t dOil 

retained Gas 
retained

Generated

Distribution of fluids inside source rockDistribution of fluids inside source rock

Xia and Tang AAPG Hedberg Convention 2010
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Using the Barnett Shale as the example

• Abundant published data
B i l hi t– Burial history (Ewing, 2006)

– GOR, composition of produced gas
(Zhao et al., AAPG Bull. 2007; Klentzman, Master thesis of Baylor, 2009 ; 

Shale 
gas

Zumberge et al., Marine & Petroleum Geology 2012)

– Source rock thermal maturity (Klentzman, 2009)

– RockEval results
(Jarvie et al. AAPG Bull. 2007; Rodriguez & Philip, AAPG Bull. 
2010; Benard et al. Organic Geochemistry 2012; Zhang et al. 
2014 in preparation)

Pollastro et al., AAPG Bull., 2007 
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Constraints from HI
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– Retained gas of Ro > 2.0% is
mainly products of early maturity 
stage or from oil cracking
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stage, or from oil-cracking

• Relation largely independent of
0
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• Relation largely independent of 
hydrocarbon migration

Ro (%)
• Constraining kinetics of primary cracking

– If A = 1013 s-1, then E = 49.5 – 59.5 kcal/mol (bulk kinetics)
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Constraints from gas composition

50

60• Wetness > 20% at low maturity
– δ13C of ethane and propane in the early wet gas 
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 Constraining the kinetics of methane and ethane 
generating from kerogen 

• Rapid wetness drop at Ro 1.5 – 2%: 
mechanism?
– Most convenient answer – cracking of ethane and -30

-25

Most convenient answer cracking of ethane and 
propane, but not supported by isotopic data
• Ethane and propane are stable in source rock 

till Ro ~ 2%
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Flushing the wet gas: 
rigorous constraint to retained oil amount
• Enough dry gas is required to flush the wet gas

Gas generated Final state

Gas in place
@ Ro  = 1.6

Gas generated 
Ro 1.2 - 1.6 

Initial state

Final state

Gas in place
@ Ro  = 1.2

Mass balance

CH4

Expelled gas
(“flushed away”

C2H6, 
C3H8

– To decrease wetness from 20% to 2% at constant GIP, 
required methane generation amount is at least equ ed et a e ge e at o a ou t s at east

ln(20/2) = 2.3 times of original GIP
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Flushing the wet gas: 
rigorous constraint to retained oil (ctn’d) 
• But kerogen HI depleted, cannot generate 

so much late gas
f

60

 Methane in late gas is mainly from oil 
cracking
 Oil cracking product is dominantly methane 30
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• Different from lab pyrolysis
• Mechanism: 

oil attached to solid kerogen preferentially 
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Optimizing the model
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Thermal history at different wellsRo %
• Eleven pseudo wells 
• General parameters

1.5
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– Current depth 1,100-2,700 m
– Current maturity: Ro 0.8-2.2%
– Initial TOC = 4%

0 5

1 290

300 mybp

– Initial HI = 570 mg HC/g TOC
– Inorganic porosity 4%
– Organic porosity calculated from 

0.5
1 2 3 4 5 6 7 8 9 10 11Well #densities of oil/gas/kerogen/coke
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Constrained and optimized kinetics and 
precursor ratios

Oil crackingKerogen/Bitumen to hydrocarbons
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Modeling results of the well with highest 
thermal maturity
• GIP: easiest to model – controlled by 

storage
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– May be contributed to retrograde 15
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Mass balance: why we cannot fit the data

• Lower GOR evolves to drier gas
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Evolving of wet gas unlikely due to 
preferable lose of methane
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Local accumulation of early gas may account 
for high wetness 
• Reason:

– Wet gas is mainly the early product of 
kerogen/bitumen (discussed above) 30
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Field data

Well #11

kerogen/bitumen (discussed above)

• To have wet gas at high maturity: 15
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oil, so that it is not diluted (or “flushed”) by the 
late dry gas
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Possible factors for separating wet gas 
from oil 
• Heterogeneity in pore system and on organic surfaces
• Migration through faults
• Storage in Ellenberger Karst area  
• Separation of Forestburg limestone

Forestburg limstoneg
(Tian, 2010)

Wet gas inconsistent
to thermal maturity
(Klentzman, 2009)

Ell b K tEllenberger Karst area
(Givens and Zhao)
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Composition trilemma

• Pick only two of the three!

Field data:Data Field data:
HI
Gas wetness
GOR

Mechanism Process

Generation mechanism as we understand:
Kerogen/oil cracking
Isotopic fractionation

Uniform generation/expulsion process:
Homogeneous pore distribution 

in meter scale; 
N l l i h t f ith il
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Phase behavior No local enrichment of either oil or gas



Conclusions

• Field data (HI and gas composition)  of shale plays provide rigorous 
constraints to model hydrocarbon generation

• There are still significant unknowns in hydrocarbon 
generation/expulsion processesgeneration/expulsion processes
– Different from lab pyrolysis
– Different from much of the current models

• Hydrocarbon composition in shale not merely controlled by thermal 
maturity, or by a uniform generation/expulsion processy, y g p p
 Geological factors should be taken into account

• Heterogeneity of storage and migration path
• Heterogeneity of accumulation/dissipation of oil/gas• Heterogeneity of accumulation/dissipation of oil/gas
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