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Abstract 

 

It is a “given” that remedial action objectives should be clearly defined before constructing an engineered remediation system. 

However, there is a difference between regulatory cleanup goals and defining when an engineered system will cease to be 

effective. Even the most innovative remediation technology has limits due to the natural complexity of subsurface geologic and 

hydrogeologic conditions. A final phase of monitored natural attenuation (MNA) after active remediation will typically be 

required before cleanup goals are ultimately achieved. The best approach to achieving a site closure is to define the exit strategy 

before implementing engineered remediation. The remediation exit strategy should be site-specific and explain how the 

engineered system will change subsurface chemistry or characteristics to address the remedial objectives. It should not only state 

the exit criteria, but also specify performance measures for system operation and decision points for transition if multiple 

technologies are planned. Scientific tools and processes that will be used to demonstrate that it is time to shut off a system 

should be described. The strategy should also allow for phasing out an engineered system over time, reducing the remediation 

‘footprint’ to only those areas that may still exceed exit criteria. The regulatory agency needs to be engaged in developing the 

remediation exit strategy. Even under the most prescriptive regulatory framework, performance goals may be established for 

subsurface conditions that will trigger remediation system end points. Finally, the approved criteria should be revisited 

periodically, as new diagnostic tools become available for evaluating remediation progress. A case study is presented for a 

robust exit strategy developed for soil/groundwater remediation of petroleum hydrocarbons at a former oil refinery. Deep air 

sparging with soil vapor extraction (SVE) began operating in 2003, following successful pilot testing. Dialog with the lead 

agency during implementation culminated in regulatory approval of an engineered remediation exit strategy. The remedial 
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objective is to employ deep air sparging to reduce dissolved concentrations until monitored natural attenuation (MNA) is more 

effective than an engineered remedy. Performance measures include system reliability (uptime), operational parameters (flow 

rates, pressure), and monitoring parameters (hydrocarbon mass removal rate, concentration decline, composition change). Exit 

criteria include multiple lines of evidence to demonstrate that contamination is diminishing and that a technology has reached its 

effective limit, such as nonlinear regression analysis of SVE mass removal rate. Rebound monitoring criteria are also 

incorporated. The approved exit strategy envisioned that SVE would eventually be discontinued, transitioning to a ‘bio-

sparging’ operation (air sparging without SVE) as part of the remediation lifecycle. In 2011, compositional changes in extracted 

hydrocarbon vapors and declining concentrations demonstrated that it was time to change technology. The dominant 

hydrocarbon mass removal mechanism had changed from air stripping (volatilization) to in situ aerobic biodegradation. The 

regulatory agency was reluctant to discontinue engineered vadose zone remediation completely, but continued SVE operation at 

the site would not be cost-effective from an energy and carbon footprint perspective. Therefore, an alternative technology, in 

situ bioventing, was proposed. Bioventing involves injection of ambient air into the vadose zone at low flow rates to enhance in 

situ aerobic biodegradation of residual petroleum hydrocarbons. An in situ respiration field test was successfully performed to 

demonstrate that bioventing can destroy significantly greater petroleum hydrocarbon mass than SVE can remove at this stage in 

the site's remediation lifecycle, and the agency approved the alternative technology. The robust remediation exit strategy, 

developed with and approved by the regulatory agency years before, was the foundation for transition from SVE to in situ 

bioventing technology. The exit strategy was revised in 2012 to replace SVE performance measures and exit criteria with 

bioventing components. The criteria were also updated to incorporate better scientific methods available today, such as 

compound-specific stable isotopic analysis, to validate remediation progress and determine when system operation should end. 

The exit strategy will continue to guide decision makers for this site throughout the remaining active remediation. 
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Why do you need a  

Remediation Exit Strategy? 
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There is a difference between regulatory cleanup goals 

and the point when an engineered system will cease to 

be effective. 
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Developing a robust  

Remediation Exit Strategy 
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 Best Practices: 

– Engage regulator early 

– Define clear decision points (flow chart) 

– Include multiple lines of evidence 

– Incorporate “footprint” reduction 

– Recognize technology advances over time 

– Cite references for scientific methods 
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Remedial Strategy Decision Tree 
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Remediation Exit Strategy components 

 Remedial objectives of engineered system 

 Performance measures for system operations 

 Diagnostic tools to demonstrate remediation effectiveness 

 Decision points / performance goals 

 Exit criteria for engineered system 

 Literature references 

6 
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Performance Goals 
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Petroleum Hydrocarbon Remediation 

Case Study 

 Deep air sparging with soil vapor extraction (SVE)  

– Early agency engagement and approval of the site 
remediation exit strategy 

 Performance measures 

– System reliability (uptime) 

– Operational parameters (flow rates, pressures) 

– Monitoring parameters (hydrocarbon mass removal rate, 
concentration decline, composition change) 

 Exit criteria 

– Multiple lines of evidence (mass calculations, time series 
plots) 

– Rebound calculation and time period 
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Vadose Zone Remediation Progress 
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2005 Soil Gas TPHg Concentrations (> 5,000 ppmv) 
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10× Vertical Exaggeration 
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2011 Soil Gas TPHg Concentrations (> 5,000 ppmv) 
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SVE Daily Mass Extraction Rate Over Time 
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Combined Regional SVE Wells Daily Mass Extraction Rate (Lbs/day) 
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Demonstrating Transition Point 

 After years of SVE coupled 

with deep air sparging, much 

of the volatile hydrocarbons 

has been removed. 

Biodegradation has become 

the dominant mass removal 

mechanism. 

 Bioventing is a “greener” 

technology than SVE and 

can deliver larger volumes of 

oxygen more efficiently to 

the vadose zone for 

biodegradation. 
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In Situ Respiration Field Test Objectives 

 Respiration rates are used to 

estimate mass destruction rates 

through aerobic biodegradation in 

units of mg TPHg/Kg soil-day 

 Aerobic biodegradation mass 

destruction rates determine 

operational requirements for a full-

scale bioventing system. 
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Projected Daily TPHg Biodegradation Rates 

Based on an In Situ Field Respiration Test 
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Remediation Exit Strategy Revision 

 Replaced SVE criteria with bioventing components. 

 Added molecular diagnostic tools (compound specific 

stable isotope analysis). 

 Retained similar performance measures and exit criteria. 

 Retained rebound definition. 

 Retained option for footprint reduction. 
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Summary 

 A robust remediation exit strategy can … 

– guide decision makers throughout active 

remediation 

– be the foundation for transition between 

multiple technologies and engineering end 

points 
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