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Abstract 

 

The Mesaverde Group within the Uinta Basin produces oil and natural gas from unconventional fluvial sandstone reservoirs. This study 

addresses the stratigraphic architecture and connectivity of fluvial reservoirs through a combination of outcrop analysis and static and dynamic 

modeling of equivalent reservoirs. The Cretaceous Mesaverde Group in outcrop and at Red Wash field, Uinta Basin, Utah, serves as an 

excellent outcrop analog and consists of a succession of fluvial channel sandstones, crevasse splays, floodplain mudstones, and paludal coals 

that were deposited by meandering- and braided-river systems within coastal- and alluvial-plain settings. Fluvial reservoir bodies are inherently 

heterogeneous at a range of scales. To analyze the range of spatial variability and to aid in constraining subsurface reservoir models, field 

descriptions including hand-held spectral-gamma-ray measurements were acquired for four stratigraphic sections (total footage= 650 ft; 198 m) 

from lower Mesaverde outcrops (near Dinosaur, Colorado). Detailed core descriptions yield facies, facies associations, and architectural 

elements present within the subsurface at Red Wash Field for comparison to outcrop. The outcrop/core observations and statistics, combined 

with fluvial sandstone-body statistics from three additional localities (Douglas Creek Arch), and subsurface well data are used to reconstruct 

local depositional styles, to aid in subsurface correlation, and to condition multiple-point geostatistical models (i.e., multipoint statistics – MPS) 

of fluvial reservoirs at Red Wash Field. Geologically constrained, well-log-based electrofacies are estimated in non-cored wells using a k-

nearest neighbor approach combined with outcrop-based thickness criteria. Three-dimensional models of architectural elements, porosity, and 

permeability show the spatial variability of reservoir properties and are used to evaluate static and dynamic connectivity across the field and 

stratigrapically. Static modeling and dynamic-simulation results explore the significance of crevasse splays and channel-sandstone bodies 

(fluvial bars) on reservoir connectivity and effective well spacing. 
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Outline 

• Introduction 
• Research focus, study area, geologic history 

• 3-D Reservoir Modeling 
• Modeling techniques and workflow 

• Fluvial Reservoir Connectivity 
• Analysis and results – well-based connectivity  

• Outcrop Analysis 
• Facies associations and paleocurrent data 
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Research Focus 

For the lower Mesaverde Group:  

• What is the stratigraphic variability of 

sedimentary and reservoir properties 

(lithology, architectural elements, 

porosity, permeability)?  

• How does static reservoir connectivity 

vary with well spacing, net-to-gross ratio, 

and sandstone-body type?  
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Study Area 

Modified from Johnson and Roberts (2003) 

Outcrop 

location 

Red Wash Field – 

subsurface  study 

area 
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Modified  

From Ron Blakey 

(2004) 

Geologic History 
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Mesaverde Group: Stratigraphy 
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• 4 measured sections 

• Total: ~650 ft  

• Facies descriptions 
• Lithology 

• Physical structures 

• Ichnology 

 

• Paleocurrent indicators 

Outcrop Analysis 
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Facies Associations 

 

Level of marine 

influence low 

Coal w/ abundant plant 

fragments 

 
Fissile, organic-rich mudstone 

 

Ripple cross-laminated 

sandstone 

 

Unit 2, MS-03 
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Outcrop Analysis 

Sand-body thickness, facies associations, and 

paleocurrent data  3D fluvial reservoir modeling  
12 



Subsurface Data 
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Architectural-Element Logs 

Mesaverde 

Group 
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Channel/Fluvial bar criteria 

• < 96 API GRN cut-off 

• < 0.25 DPHI signature 

• Fining-upward log 

signature 

• Sharp base 

 

Crevasse Splay criteria 

• < 96 API GRN cut-off 

• Coarsening-upward log 

signature 

 

Floodplain criteria 

• >96 API GRN cut-off 

 

Coal criteria 

• < 96 API GRN cut-off 

• > 0.25 DPHI signature 
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Stratigraphic Framework 

Zone 1 
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Zone 3 
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Modeling Techniques 

• Sequential Indicator Simulation 

(SIS - cell-based) 

• Assign geologic/petrophysical 

properties cell-by-cell 

• Variogram based - geologic 

shapes are difficult to model 

• Object-based (Boolean) 

• Defined facies objects to populate 

the model 

• Size, geometry, and orientation of 

distinct geologic bodies (i.e., from 

outcrop) 

• Multi-point Statistics (image-based) 

• Training image  replaces the 

variogram 

• Model spatial geologic 

relationships and concepts 

Multi-point 

Statistical 

Simulation 

(MPS) 

Object-Based 

Modeling 

(OBM)  

Sequential-

Indicator 

Simulation 

(SIS) 
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Modeling Architectural Elements 

What are the preserved geometries of the deposits? 

Donselaar and Overeem, 2008 

Crescent-shaped fluvial bars? Sinuous channel sandstones / 

fluvial bars?  

Probably none of the above… 17 



Integrated Modeling Approach  

Multiple-point 

geostatistics (MPS) 
 

Training images  

• object-based modeling 

of two scenarios 

 

• Generated for each zone 

 

• Constrained to outcrop-

based statistics 

Sinuous channels / 

fluvial bars 

Crescent-shaped 

fluvial bars 

2000 ft 

•  Training image size: 7810 x 8820 x 30 ft  

•  Cell size: 50 x 50 x 1 ft  18 



MPS-Based Fluvial Reservoir Models 
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Static Connectivity 
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Static Connectivity 

160-ac 40-ac 10-ac 2.5-acCurrent

10 wells 
(approx. 40-ac) 

 

3 wells 
(2640 ft apart) 

 

12 wells 
(1320 ft apart) 

 

 

54 wells 
(660 ft apart) 

 

228 wells 
(330 ft apart) 

Sandstone connectivity & “Reservoir-quality” sandstone 

connectivity (6%-15% porosity)  
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Connectivity based only 

on fluvial bars 

Connectivity of 

fluvial bars & 

crevasse splays 

Static reservoir sandstone connectivity impacted 

by the presence of crevasse splays  
 

Impact of Crevasse Splays 

23 



Zone 1 

Zone 2 

Zone 3 

Zone 4 

Zone 5 

Zone 6 

Stratigraphic 

variation in 

connectivity 

and N:G ratio 

 

V.E. = 4x 

Top Neslen 

Top Sego 

Static Connectivity by Zone 

24 



Static Connectivity by Zone 

Zone 1 

Zone 2 

Zone 3 

Zone 4 

Zone 5 

Zone 6 

2.5-ac 

Spacing 
(highest well 

density) 

160-ac 

Spacing 
(lowest well 

density) 

High well density 

 little variation 

in connectivity  

Low well density 

 variable 

connectivity based 

on N:G ratio  

25 



26 

Presenter’s notes: Outcrop dimensions are consistent with other studies conducted along the DCA. Uncertainty regarding the preserved geometry of fluvial 

deposits was addressed using two MPS modeling scenarios: sinuous channel fill/bars & crescent-shaped channel bars. Static connectivity of fluvial sandstones 

increases with higher well density, but decreases on a per-well basis. High well density (2.5-ac) produces little variation in static connectivity regardless of N:G 

ratio. Low well density (160-ac) produces variable static connectivity as N:G ratio varies stratigraphically. 
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BACKUP SLIDES 



Previous Work: Static Connectivity 

• Static connectivity: the percentage value that is calculated by the 

volume of sandstone connected to a particular pattern of wells divided 

by the total sandstone volume 

• Pranter and Sommer 

(2011) 

• Synthetic outcrop-based 

model with various net-

to-gross and well-

spacing scenarios 

From Pranter and Sommer (2011) 



Previous Work: Static Connectivity 

Relationship between net-to-gross ratio and 

connectivity for multiple well-spacing scenarios 

From Pranter and Sommer (2011) 



Background: Architectural Elements 

• Analog: Williams Fork 

Formation, Piceance 

Basin  
• (Anderson, 2005; Cole and 

Cumella, 2005; Pranter et al., 

2009; Harper, 2011; Hlava, 

2011; Pranter and Sommer, 

2011) 

From Pranter et al. (2009) 

 

• Architectural elements 

•  distinct geometry 

•  spatial distribution 

•  facies/facies 

associations 

 

 



Training Image Testing 
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Porosity Model  

“Reservoir-quality” sandstone 

connectivity (6%-15% porosity)  

Sequential Gaussian Simulation 



Connectivity by Zone 

Stratigraphic 

variation in 

connectivity 

and N:G ratio 

 



Connectivity by Zone & N:G Ratio 



Well-based Connectivity 



Sequential Indicator Simulation 

• Sequential Indicator Simulation 

(SIS - cell-based) 

 

• Assign geologic/petrophysical 

properties cell-by-cell 

 

• Most common industry 

standard; highly tested 

 

• Can honor large amounts of 

data 

 

• Geologic shapes are difficult to 

model 



Object-Based Modeling  

• Object-based (Boolean) 

 

• Defined facies objects to populate 

the model 

 

• Rock properties modeled within 

objects 

 

• Honor geologic rules 

 

• More difficult to honor large 

amounts of data 

 

• Size, geometry, and orientation of 

distinct geologic bodies (i.e., from 

outcrop) 



Multi-Point Statistics (MPS) 

• Multi-Point Statistics (MPS) 

 

• Training image  replaces the 

variogram 

 

• SNESIM algorithm 

 

• Model spatial geologic 

relationships and concepts 

Training Image Example 



Paleocurrent Data 

n=34 n=24 n=4 

n=16 n=24 



Paleocurrent Data 

n=7 n=16 n=26 



Methods: Fieldwork 

• Field observations 

• Lateral and vertical changes 

in lithology 

• Grain size and sorting 

• Bioturbation 

• Sedimentary structures 

• Paleocurrent indicators 

• Significant surfaces 

• Sandstone body measurements 

• Dimensions 

• Abundance 

• Stacking patterns 

 

• Measured sections 

Mesaverde roadcut along US Hwy 40 just west of Dinosaur, CO 

Up section 

Mesaverde Roadcut 
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Locations of Measured Section 

MS-01 

Utah Colorado 



Ripple cross-laminated sandstone 

•White to beige fine- to medium-grained 

sandstone 

•Climbing asymmetrical ripples 

 

Fissile mudstone 

•Dark grey to black, organic-rich, fissile 

mudstone 

•Abundant plant debris  

•Associated with thin (<1 ft) coal beds 

 

Common Facies Present 



Convolute sandstone 

•Beige fine- to medium-grained sandstone 

•Soft sediment deformation 

 

Sandstone with wood fragments 

•White fine- to medium-grained sandstone 

•Poorly indurated 

•Wood fragments and plant debris 

 

Cross-bedded sandstone 

•Low- to high-angle cross-bedded sandstone 

 

Common Facies Present 



Geologic History 

Modified from Blakey (2004)  

and White et al. (2008) 



  

Depositional Setting 

Mancos Sea 
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Methods: Subsurface Data Set 

• Well logs for ~70 wells in Red 

Wash Field   

Multi-well histograms for grouped gamma ray log normalization using PowerLog  

Normalized gamma ray curves in PowerLog 

• Manual interpretation of 

architectural elements 
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