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Abstract

Source-to-sink interpretations of genetic equivalency between fluvial feeder systems and basin accumulations infer that the sediment supplied
by the rivers is in mass balance with the sediment volume ultimately deposited. This relationship has value for modeling basin fill volumes
over time steps and for related projecting of reservoir partitioning and potential. Executing an estimate of this mass-balance assumption is
challenging in modern systems but even more difficult in deep-time stratigraphic settings where critical variables from the source and sink
system are not preserved or preserved with large uncertainties. Available data sets from ancient systems are likewise often limited to a few
localized boreholes. This article offers a method for estimating mass flux from the source area to the basin sink by calculation of
paleohydrologic variables from a cross-section of channel-belts using data extractable from outcrop or core. We use the Cenomanian channels
of the Bahariya Formation, Egypt to test this method.

Total sediment mass passing through a cross section of channels over a period of time should match with both the total sediment delivered to
the channels from the source area and the total volume delivered through these channels to basin. This cross section would constitute a fulcrum
across which source and sink sediment mass should balance. Flow transport equations are used to estimate bankfull discharge and sediment
concentrations using methods illustrated in Van Rijn (1984) and Parker (2004). These concentrations are projected over longer durations to
estimate total channel mass-through flux over basin time spans. These estimates can be tested against known basin accumulation volume and/or
estimates of basin denudation. The required calculations can be made from paleohydrologic information routinely extracted from core and/or
outcrop data sets by reconstruction of channel-belt architecture and sediment sampling. Calculations of mass flux from Bahariya channels

that feed the equivalent fluvial/marine basin show these channels were capable of delivering twice the sediment actually preserved. This
method is nascent in its development and limited by large uncertainties in averages and deviations in key parameters used in calculations,
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particularly in the relationship between bankfull and annual-average discharge. At present, the method is accurate only within an order of
magnitude.
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Presenter®s notes: Recognition of channel belts in core and wire-line log is pivotal to AEA at the belt scale. Bridge and Tye define numerous sequences that
are typical of sections encountered in channel belt penetrations. This slide offers a series of “mug shots” for channel belts.



W
A Fulcrum Test Workflo

Ample ¢
€ntion

Estimate
isy

Bankiy)|
D charge

Measyre Story

thickness gy, ¥ | i
borehole/omcrop or Esl:mate Slope
estimate frop, Cross.

S) from
%) ([ (HMS)/(RD;Q)
Set thickness
\ - \_‘
Estimat,
Correct Story thickness
ion

@ bankfy)|
Water digch,
for Compacti

arge (Q,,)
frop

Estimate OF Measyra
channej Wwidth

\

Calculate Suspendeq
load (g ,,
1

L) Sing Vap, Rijn
[§ 984) €quation

harge (g,
8.Q,, =
S S 3‘101(qm)sss.351]
Collect VEDreSen\ahve Es'timale total bedloag Avmge tieie
bedloag SAMple(s) ang ~ discharge Q= By = :
determ;, ulat, =
'eterm; :‘e'::m e BN{REDSD)VZD

aNnua| se,
sodlfar,
)

n
Water gjs,
petyt for "fa,

uration
o measuremeng, to
q.= Fude, Benerate CUmulatiye
sediment dischar, e
\ B ] T discharge
®r alternatjye
oncentratio, (c) ek valueg o
values leg, Garcig and
Parker, 199,

“Umulatiye

t

3 discharge 3gainst Other
¥ + Wright X

and Parker, 2004) Independ

me

Estimate
o water disg,
Gl 1 e
\ B \KH\"‘,

Ban anny,|

Sedimens

Nt estimates




A Fulcrum Test Example

s § oot

The Bahariya Fm %}




oW
A Fulcrum Test Worki{l

aMple ¢
€ntion

M cross.
Set thickness

Correct Story thickness
for COmpaction

Estimate OF Measyra
channej Wwidth

Estimate Banfy)|
Discharge /

Estimate Slope (S) from
sy = HeS)Ro, )

- \
Estimat,

@ bankfy)|
Water digch,

arge (Q,,)
from
Q[(Q,,’)/(B.,.‘H,.’l] =
= BH,S
Estimate total bedloag
L discharge Q= 8ol
Bnr(ﬂlbso)uznslga‘['x"m

\

Data -
Collection

petyt

Calculate Suspendeq
load (g ,,
1

L) Sing Van, Rijn
[§ 984) €quation
9: = Fude,

®r alternatjye
cun(enualiun (c,)
values leg, Garcia and
Parker, 1gq + Wrighy
al

Estimate

waterdisgharge(()‘ )
580, =

Mean annyy

discharge of ar, e

channelg OVer duratiop,
of measuvernents to
Eenerate Cumulatiye

sediment dlschavge /

Check vy
“Umulatiye
dischavge
indepeng,

lues for
sedimeng
3gainst Other
Nt estimates




== mm mm nterval of section represented in Figures 8- 11

ks >
Tincios e Foces
frompy |

17

The Fulcrum

Bahariya Fm




Channel Story Thickness and Bedload Sampling

Bahariya Fm
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Channel Hydraulics
Flood Frequency and Bankfull Flow
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Presenter®s notes: Not all sampling is random and many examples are known where a unique output is driven by some average/attractor. (example, Channel
size converging toward alliance with mean annual flood)



oW
A Fulcrum Test Worki{l

aMple ¢
€ntion

M cross.
Set thickness

Correct Story thickness
for COmpaction

Estimate OF Measyra
channej Wwidth

\

Bankfull Qw,s

Estimate
Disch

Bankiy)|
arge

4
\

Estimate Slope (S) from
sy = HeS)Ro, )

- \
Estimat,

€ bankfy)|
Water discharge Q)

from
Q[(Q,,')/(B.,.‘H,.’l] =
- 8H,S

Estimate total bedloag
L discharge Q= 8ol
Bnr(ﬂlbso)uznslga‘['x"m

petyt

Calculate Suspendeq
load (g ,,
1

L) Sing Van, Rijn
[§ 984) €quation
9: = Fude,

®r alternatjye

cun(enualiun (c,)

values leg, Garcia and
Parker, 1gq + Wrighy

Estimate

waterdisgharge(()‘ )
580, =

Mean annyy

discharge of ar, e

channelg OVer duratiop,
of measuvernents to
Eenerate Cumulatiye

sediment dlschavge /

Check vy
“Umulatiye
dischavge
indepeng,

lues for
sedimeng
3gainst Other
Nt estimates




Calculating Bankfull Qw/Qs

Bahariya Fm
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Bahariya Fm
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Calculating Bankfull Qw/Qs
Largest Channels/Bahariya Fm

[EEE Marine Carbonate
B Marine Siliciclastics
[0 Fluvial and Estuarine
=3 Fluvial

[ Eroding Positive

Drainage Area (after Davidsen and North, 2009)

Channel | Average | Suspended Bed Water Drainage area Drainage area
Section Bankfull | load load Discharge | (km?)/ discharge (km?)/discharge
and Depth (m?/sec) (m*/sec) | (m*/sec) | (m?/sec) /drainage | (m?/sec)/drainage
Number | (d,) (m) | (range) length (km) length (km)
(semi-arid)* (semi-arid-humid)*
Nagb 1 231 0.074-0.506 | 0.034 203.8 30786/508/691 5215/340/238
Nagb 4 2.26 0.036-0.147 | 0.033 191.85 28950/485/665 4987/327/232
Nagb 6 2.63 0.09-0.376 | 0.032 267.8 52082/761/947 7644/472/299
Gab.R1 3.02 0.155-0.75 0.053 440.4 97350/1232/1378 12047/698/393
Average | 2.55 0.089-0.445 | 0.038 | 276 52292/747/920 7473/459/291




Paleocene-to-Middle Miocene

Calculating Bankfull Qw/Qs
Bahariya Fm
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Converting Bankfull to Annual Qs
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Channel Hydraulics
Sediment Discharge and Bankfull Flow Q... = Q.. (t,4)b
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Presenter®s notes: Not all sampling is random and many examples are known where a unique output is driven by some average/attractor. (example, Channel
size converging toward alliance with mean annual flood)



Qs Volume Balance
Bahariya Fm
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Quantitative Geomorphology and Paleohydrology
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Oligocene-Miocene Detachment Province, North Gulf of Mexico (All images Wood, 2007)

Presenter"s notes: Once we have distinguished channels and bars, we can start using quantitative geomophology techniques to estimate fluvial characteristics
such as discharge, sediment supply, etc.

It is possible to determine flow characteristic of ancient fluvial systems.

The area of study was in the northern Gulf of Mexico (Vermillion Island and South Marsh Island) shelf study area, 902 square kilometers of 3D seismic data
and well logs was analyzed. A method called quantitative seismic geomorphology (QSG) is used to analyze landforms image in seismic 3-D for the
purposes of understanding history, process and fill architecture of basins and fluvial systems. Three specific fluvial-incision classes were examined and were
found to show their own unique sinuosity, channel widths, meander lengths and meander-belt widths. These characteristics were capable of showing
relationships of shale versus sand present in channel fills.

The top loft graph is a Width-to-depth plot of Class 3 and Class 2 systems. Class 3 systems, distributaries, and creeks show shallower depths and narrower
widths than Class 2, bypass systems.

Top Middle Figure: When meander belt width was plotted versus meander belt length, Class 1 systems had a high MBW and high ML indicating relatively
low discharge and thus carrying only suspended load.

Class 2 systems had low MBW and low ML and thus lower discharge due to its size but able to carry a mixed load.

Class 3 Systems and a low MBW, but a high ML meaning a high discharge carrying bedload.

The top right graph is a cross plot of meander-arc height versus channel width. The widening ,,.envelope“as the channel widths and meander-arc heights
increase indicates the increasing uncertainty of predicting the actual channel-body sizes as systems become larger. However, the previously defined classes
fall into distinct morphometric provinces that allow their differentiation.

Classification of the channels systems is based on a range of sinuosity since sinuosity alone is not used to characterize these systems. Class 2 system
sinuosity ranges from a low 1 to 1.4 which is a bedload carrying channel. Class 3 sinuosity system sinuosity ranges from 1.4 to 2 making them mixed load
channels. Class 1 system sinuosity ranges from 2.0 and above making them suspended load channels.

Class 1 Systems are large, aggradational fluvial systems with large meander-belt width, high sinuosities and large meander-arc heights. They are
transportive and depositional, forming extensive flood plains, with large abandoned oxbow lakes. They have the highest sinuosity and are easily and easily
differentiated from the relatively straight Class 2 Systems. These systems were not evaluated for sand quality.

Class 2 Systems are interpreted as bypass fluvial valleys, showing significantly lower sinuosity and well defined edges within the study area and small
meander-arc heights. They show significant incision and are often filled with many individual channel types are dominantly filled with a sandy lithology.
They are extremely thick, 20 to 50 m, and have good sand volumes generally with 26% to 32% porosity.

Class 3 Systems are made of up a wide variety of architectural element in the fluvial-deltaic coastal-plain system including distributary channels, tidal
creeks and interdistributary drainages. They form narrow meander belts with highly sinuous and often crenulated channels and are sometimes nearly
anastomosing. The make up the range between Class 1 and 2 systems. Channel fills generally average around 12 m thick with good sand percentages with
24% to 29% porosity.
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Presenter®s notes: Since sampling builds toward larger elements, which serve as the sample population for larger elements, the shredder concept means that
signals preserve at order = Tx+1, or at the order that best coincides with the duration of the actually change. No sense in looking for the signal where the
duration of the process is substantially different that the duration of the signal.



Conclusions

*The Fulcrum Test is a valid way to estimate
source-to-sink flux with common data sets

*The Fulcrum this’is still yet rich with
errors and limitations that can be improved
with to a factor of three with better analogs
and sharpened with more robust data sets

*A good method to couple with other
methods.






