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Abstract

The Upper Cretaceous Ferron Sandstone consists mainly of fluvial-deltaic deposits. Within deltaic environments, thin beds
commonly occur, especially in delta front and prodelta. Primary initiation processes to form thin beds include ignitive turbidity
currents, hyperpycnal flows and storm surges. Ignitive turbidites are characterized by the classical fining upward Bouma
sequence. Hyperpycnites can show either inversely graded or normally graded bedding. Storm deposits (tempestite) are fining
upward and are characterized by the hummocky cross stratification (HCS) and wave ripples. All these three processes are
common in deltaic systems. Ignitive turbidity currents and hyperpycnal flows indicate fluvial-dominated depositional
environments, whereas tempestites directly linked to wave/storm dominated environments. With the fully developed sequence
stratigraphic framework across the study area, the relative amount of sedimentary structures generated by each depositional
process can be calculated from a series of measured stratigraphic sections within a single parasequence (Parasequence 6) which
is continuously exposed along depositional strike. For each measured section, important sedimentological data including grain
size, lithology, bedding thickness, sedimentary structures and ichnological suites have been documented in a millimeter to
centimeter scale. The thin-bedded prodelta and distal delta front facies within Parasequence 6 show a strong along-strike
variation with completely wave-dominated facies in the north, passing into river-dominated facies southward, then to river-
dominated, wave-influenced facies south to southeastward, and a wave/storm-dominated facies further to the southeast. Results
show that it is practical to quantify the relative importance of formative processes and determine the along-strike variation
within Parasequence 6 of the ancient Notom Delta system using thin-bedded facies analysis.
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4. Facies Description and Interpretation

The thin-bedded prodelta and distal delta front facies within parasequence 6 show a strong
along-strike variation with a completely wave-influenced environment in the north, passing abruptly into
a fluvial-dominated area , then to an environment with varying degrees of fluvial and wave influence
southward, and back to a wave-dominated environment further to the southeast . The depositional
model of parasequence 6 is interpreted as a bayhead delta based on this along-strike variation.
Results in this study indicate that it is practical to quantify the relative importance of depositional
processes and determine the along-strike variation within an ancient delta system using thin-bedded
facies analysis.

the wave-dominated shoreface deposits in the north into fluvial-dominated, wave-influenced facies towards the south. The red triangles indicate
the locations of measured sections in this study. Only the first 6 sections are shown in this strike stratigraphy.

3. Methodology

Parasequence 6 is exposed to both strong fluvial influence and storm influence. In a fluvial-dominated deltaic system, the delta front and prodelta
facies are prone to form thin beds. Under strong storm influence, thin beds commonly occur in the lower and distal lower shoreface facies. Three
primary formative processes of thin beds include 1) ignitive turbidity currents, 2) hyperpycnal flows, and 3) storm surges.

Normal grading

Fig 4C1. Relative amounts of different sedimentary structures
Fig 4C2. Relative mﬂuence of fluwal and wave- dommated processes
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4. Facies Description and Interpretation

Measured Section 2

4. Facies Description and Interpretation

4. Facies Description and Interpretation

4.2 Mixed Fluvial- and Storm-influenced Environment
Measured Section 5: Storm-dominated, fluvial-influenced

4.3 Storm-dominated environment
Measured Section 11_Storm-dominated
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deposition from unidirectional flows
(Fig 4H1 and 2). Higher percentage of
storm-generated sedimentary
structures indicate that this locality
was exposed to stronger storm
influence compared to section 1.
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length of the pencil is about 13cm; 3, inclined Ophiomorpha (Op) and vertical
4m Skolithos (Sko) in Fig 4Q2; 4, relative amount of sedimentary structures in
407 section 11; 5, fluvial vs. storm influence.
Process interpretation: Sections 7 to 11 all contain significantly higher
amounts of sedimentary structures, such as wave ripple laminations and HCS, typical
of deposition of strong oscillatory flows. The relatively high bioturbation intensity also
suggests that those localities are exposed to dominant storm influences.
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5. Conclusions
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Fig 5A. bay-head delta model based on the results in this study

only dipping in one direction; 3,
dewatering cracks and trace-fossil
escape structure; 4, mudstone with silty
laminations, wave ripple laminations,
- _| and inverse-to normal grading; 5, pie

30- ‘ | chart showing sedimentary structures

®.2 present in section 3; 6, fluvial vs. storm
~ influence. 4l °

Fig 4N. 1, amalgamated normal grading and inverse-to-normal grading; 2, wave ripple
laminations (bottom) and combined flow ripple laminations (top); 3, relative amount of

sedimentary structures; 4, fluvial vs.. storm influences
Process interpretation: Sections 3 to 6 show strong fluvial and storm influence. ,

The presence of combined flow ripple laminations, particular stratification, and
grading sequences (Fig 40 4,6,7, 11, 12 and 13) all indicate deposition from the
combined effects of unidirectional flows and oscillatory flows.
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parasequence 6 is interpreted as a river-dominated bayhead delta which is partially
protected from marine-influence by wave-formed shoreface deposits on both sides.

3) The thin-bedded prodelta and distal delta front units within Parasequence 6 were
deposited from the combined influence of turbidity currents and storm surges. By
examining the vertical stratification and grading sequences within these thin beds in
great detail, conceptual models of deposition from turbidity currents, storm surges, and
the interaction between these flows can be constructed.




