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Abstract 

 

This study addresses the field-scale architecture and static connectivity of fluvial sandstones of the lower Williams Fork Formation through 

analysis and reservoir modeling of analogous outcrop data from Coal Canyon, Piceance Basin, Colorado. The Upper Cretaceous lower 

Williams Fork Formation is a relatively low net-to-gross ratio (commonly <30%) succession of fluvial channel sandstones, crevasse splays, 

flood-plain mudstones, and coals that were deposited by meandering river systems within a coastal-plain setting. The lower Williams Fork 

outcrops serve as proximal reservoir analogs because the strata dip gently eastward into the Piceance Basin where they form natural gas 

reservoirs. 

 

Three-dimensional architectural-element models (3-D reservoir models) of the lower Williams Fork Formation that are constrained to outcrop-

derived data (e.g., sandstone body types, dimensions, stratigraphic position) from Coal Canyon show how static sandstone body connectivity is 

sensitive to sandstone body width and varies with net-to-gross ratio and well spacing. With a low well density (e.g., 160-acre well spacing), 

connectivity is low for net-to-gross ratios less than 20%; connectivity increases between net-to-gross ratios of 20 to 30%, and levels off above a 

net-to-gross ratio of 30%. As well density increases, static connectivity increases more linearly with an increasing net-to-gross ratio. For a 20-

acre well spacing, static connectivity can range from approximately 35 to 75% and 45 to 80% for net-to-gross ratios of 10 and 15%, 

respectively, depending on sandstone body width. Given the lower net-to-gross ratio and continuity of lower Williams Fork deposits, this 

underscores the importance of representative sandstone body statistics (e.g., sandstone body type, dimensions) to aid in subsurface correlation 

and mapping and to constrain reservoir models. 
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Research Objectives

• Evaluate the stratigraphic variability and reservoir-scale 
architecture of fluvial sandstone bodies

• Establish a database of fluvial sandstone-body dimensions 
for reservoir modeling (mapping)

• Evaluate relationships among sandstone-body parameters 
and reservoir connectivity

• Apply outcrop-based concepts and statistics for integrated 
reservoir characterization

For the Cretaceous Williams Fork Formation 
and equivalent strata:  
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Study Area

Pranter et al. (2009)



Study Area

Iles Formation
Rollins Sandstone

Lower Williams Fork Formation

Cameo Zone



From Ron Blakey
(N. Ariz. Univ.)

Late Cretaceous (~75 ma)



3,000 Ft

2,000

1,000

0

Lance Fm.
Laramie Fm.

Lewis Sh.

Pierre Sh.

Mancos Sh.

Fox Hills Ss.

Iles Fm.
Neslen Fm.

Tuscher &
Farrer Fms.

Buck Tng.

Castlegate Ss.

Sego Ss.

Blackhawk Fm.

Emery Ss. Mbr.

Ferron
Ss. Mbr.

Price River Fm.
Corcoran Mbr.
Cozzette Mbr.

Rollins Mbr.

Non-Marine (Alluvial Plain & Coastal Plain)

Marginal Marine (Strandline & Deltaic)

Marine (Shelf/Ramp)

Castlegate Ss.

C
am

pa
ni

an
Sa

nt
on

ia
n

C
on

.
Tu

r.
M

ae
st

ric
ht

ia
n

Modified from Molenaar and Rice (1988)

~350 Miles
West East

SW Piceance Basin

Regional Stratigraphy



Mancos Sea

0 50 100

miles

Strandline / Deltaic

Coastal Plain

Paludal

Piedmont Rollins (Iles)
Cameo Coal

Coastal 
Plain

Alluvial 
Plain

Depositional Setting

Modified from Ryer and McPhillips (1983); Provided by Rex Cole



Stratigraphy and Fluvial Styles



Teredolites Ichnofacies –
indicating marine influence
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Ichnofacies is 

identified by the 
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Skolithos Ichnofacies –
indicating marine influence

Ophiomorpha Skolithos

After Benton & Harper (1997)



Stratigraphy and Type Well
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Sandstone-Rich
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Summary of
Fluvial Architectural Elements

Pranter et al. 
(2009); 

Pranter and 
Sommer (2011)



Fluvial Sandstone-Body Dimensions were Measured 3 Ways
1. Field Mapping (GPS & Measured Sections); Ground Pounding
2. Aerial LiDAR coupled with Aerial Orthophotographs (Petrel)
3. Calibrated Photo Panoramas of Cliff Faces

65 mi2
39 Flight Lines
1.5-ft Resolution

Methodology: Outcrop Measurements



N = 136

Sandstone-Body Distribution

Cole and Cumella (2005)2001 & 2002



Ground-Based LiDAR – “pilot” study

May 2003
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Architectural-Element Heterogeneity
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Modified from Ellison (2004) and Pranter et al. (2007)
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2-D and 3-D Point-Bar Reservoir Models

Modified from Ellison (2004) and Pranter et al. (2007)
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Lithology Model 2: 
Fluid baffles along lateral 
accretion surfaces

2-D and 3-D Point-Bar Reservoir Models

Lithology Model 1: 
Homogeneous point bar 
deposit

Lithology Model 3: 
Fluid baffles associated with 
shale breaks on lateral 
accretion surfaces
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Aerial LiDAR - Light Detection And Ranging

Pranter, Cole, Panjaitan, Sommer (2009)

April - June, 2005
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Pranter et al. (2009)

LiDAR -
Coal Canyon

Sandstone-Body
Dimensions:

Thickness and 
Apparent Width
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Mapped Fluvial Deposits - GPS

Data from Cole and Cumella (2005), Panjaitan (2006), and Pranter et al. (2009)



Mapped Fluvial Deposits - LiDAR

Data from Cole and Cumella (2005), Panjaitan (2006), and Pranter et al. (2009)
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Geologically Constrained 
Architectural-Element Estimation

Overall Accuracy = 84%

2010 - 2013 Allen (2013)

Manual Interpretation

Constrained Quantitative 
Interpretation



Fluvial 3-D models to assess connectivity of 
reservoir sandstone bodies

Reservoir Connectivity

Sommer (2007); Hewlett (2010);
Pranter and Sommer (2011);

Sloan (2012); Pranter et al. (2013)

Various modeling methods
are used:

SIS, Object-Based, MPS, merged
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Donselaar and Overeem, 2008

What are the preserved shapes and distributions of 
the fluvial deposits that form the reservoirs?

Two Scenarios (out of many)

Reservoir Modeling Approach
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Cumulative production probability comparing the string-of-beads 
MPS model to the mudstone-plug MPS models at 10-ac (4-hectare, 

330-ft) spacing. A difference of 18% production between the two 
models occurs at 0.50 probability. The 18% difference in production 

is related to the presence of mudstone plugs.                    

Cumulative gas recovery after 30 years comparing the string-of-beads 
MPS model with the mudstone-plug MPS model for 64 wells at 10-ac 
(4-hectare, 330-ft) spacing.  Shows the variation in recovery.  The 
string-of-beads MPS model shows the highest recovery over 30 years.

Dynamic Connectivity



Deep, deep thoughts…
well, perhaps just common sense…

• Evaluation of reservoir heterogeneity, connectivity, and 
performance relies on sound geological characterization at 
different scales… 

• Reservoir connectivity is directly related to the stratigraphy, 
sedimentology, and other geological characteristics…it is a 3-D 
issue and is actually a dynamic issue…

• Static connectivity analysis based on 3-D reservoir models 
provides, at best, a qualitative assessment of reservoir 
connectivity…highly constrained 3-D static reservoir models and 
dynamic simulation are essential…

• There are many questions regarding the characteristics of fluvial 
deposits and reservoirs, and importantly, how to properly 
address the various scales of heterogeneity that exist…



Thank you!


