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Abstract

Ordovician, Mississippian, and Pennsylvanian strata in Kansas all show fracturing, megaquartz, silica dissolution, carbonate dissolu-tion,
baroque dolomite, MVT minerals, and calcite after stylolitization. CL petrography, fluid inclusions, #Sr/*®Sr, and §'%0 indicate hydrothermal
fluid flow affected Ordovician-through-Pennsylvanian stratigraphic units.

The history is simplified into three phases of hydrothermal fluid flow (86-144°C). All show evidence of thermal pulses, suggesting tectonic
valving. Phase | was from brines near seawater salinity, interpreted as connate fluids migrating out of the Anadarko basin, likely during the
Pennsylvanian or early Permian. Fluids were associated with gas, and precipitated megaquartz.

Phase I led to precipitation of baroque dolomite. Fluid inclusion data indicate high salinities (20 wt. %) and 8'Sr/%Sr indicate advective fluid
flow across long distances. 820 data indicate the Ordovician-Mississippian section acted as an aquifer in vertical communication, leading to
warmer fluids and preferred flow towards the top of the Mississippian. The shale-rich Pennsylvanian section acted as a leaky confining unit.
This phase of fluid flow was associated with oil migration and likely occurred late in the Permian or after.

The first two phases of hydrothermal fluid flow are associated with fracturing, silica dissolution and carbonate dissolution. Much of the
porosity, typically assumed to originate from subaerial weathering, may have been generated by these late hydrothermal fluids. The fluids
followed fracture systems and were concentrated along the tops of hydrothermal aquifers by stratigraphic discontinuities and temperature-
controlled density differences. This model for hydrothermal porosity formation helps to explain the spatial variation in reser-voir quality in the
Mississippian and leads to an enhanced model for locating the best producers.

Phase 111 of hydrothermal fluid flow was complex, and is recorded by calcite cements. Spatial variation of 520 and ®Sr/%°Sr indicate cessation
of advective fluid flow and initiation of localized vertical fluid flow, possibly directly from basement. A driver could be localized faulting and
fracturing associated with Laramide or other deformation. Comparison of fluid inclusion temperature and salinity data to modern reservoir
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conditions indicate that this phase clearly predates the current fluid flow and thermal regime, but played a part in evolution of the reservoir
system.
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Purpose

* Integrate petrographic and geochemical data
to provide new insights into ancient fluid flow,
thermal history, hydrocarbon migration, and
origin of porosity

e Study Arbuckle through Pennsylvanian in

Midcontinent to show three-stage evolution of
hydrothermal system

* New conceptual model for hydrothermal fluid
flow useful in predicting the distribution of
porosity in the subsurface



Purpose

e Utility in predicting distribution of porosity
— Investigate the paradigm that enhanced porosity

in chert and carbonates is only related to
subaerial weathering

— Show that much of this porosity forms late, in
association with hydrothermal fluid flow

— If controlled by hydrothermal fluid flow, late
timing, structural, and stratigraphic controls are
key to reservoir properties



Study Area

Nebraska

g /r

(@)

9\.

= N

% Denver

% Basin XX Missouri
H-

.,

> <

wn o

b Tri-state
oo | MVT ores
Colorado :

Y

L] Approximate Study Area

0 Kilometers

-----
lllllll
PTL

500
- s .
0 Miles

achita Mountains
500
e e s |

Image modified from Garven, 1993



Study Area

, Lyon

' ~ Coffey Anderson
b ~ \ n
5 ‘@(DJ '. Bubler e ,bOQ’Aw.
Woodson Bourbon
—Ab___ 74 ’ @ : Cb
.\C) \Q' ,\({)Q s -~
N Allen
& LS ik,
b E:, \i\ I Neoshg FeEr
b ? 6 Crawfor
o e & Cherokee Basin
&4 T
@ Elk Montgemery Labette
F, N
Sumner ' Canley Chautaugua / Chetekee

Wellington and Vulcan cores

0 Miles 50 100
— I pM_8
0 Kilometers 100 PM-12

N L,‘ Location of ma? ar;:a J(} PM-21
" T 7 PM-T

(W e

/" 0 |Cherokee County

(Ramaker et al., 2014)



:>;‘ Relevant Unit Lithology Depths
£l Sumner Group >90-
o 1197 ft
% Various Ls & Sh
[= 9
o 3658 ft
c Upper Mississip-
=3 pian Series
o
%]
2 3891 ft
é Lower Mississip-
pian Series
D-M| Chattanooga Shale 4063 ft
Simpson Group
4165 ft
c Ll LS L
i e s B e e A
) = Z = ~ =
> R R R
o Pl oz .
je bty bty bty
Q o i o
I% Arbuckle Group e e e s
£ 7= 7= 7=
o = = =
@) S n S e —  ——_n -
5164 ft
W Granite
o

Basement




Arbuckle Group Late Paragenesis

Diagenetic Events

1. Original Deposition
2-3-4. Early Dissolution

2-3-4. Replacement Dolomite (RD)
2-3-4. Anhydrite (A)

5. Early Dolomite Cements (EDC)
6. Silicification (RC)

7. Chalcedony (Ch)
8. Karsting (Carbonate Dissolution)

9. Brecciation and collapse features
10-11. Middle Dolomite Cements (MDCQC)

10-11. Pyrite (P)

12. Megaquartz 1 (MQT1)

13. Internal Sediment (IS)

14-15. Stylolitization & emanating fractures
14-15. Fracturing (F)

16-17. Silica Dissolution

16-17. Carbonate Dissolution
18. Megaquartz Cement 2 (MQ2)

19. Baroque Dolomite (BD)
20. Petroleum Migration
21-22-23. Galena (G)
21-22-23. Sphalerite (S)

21-22-23. Calcite Cement (CQ)




Arbuckle Group |Ideal Paragenesis
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Mississippian Diagenetic History

Diagenetic Stages (DS)

Subaerial
exposure

Mississippian Burial Hydrothermal

(1) Deposition

(2) Micritization

(3) Early stage dolomitization
(4) Silicification

(5) Middle stage dolomitization

(6,7) Karst

(6,7) Dissolution of silica

(8) Brecciation and fracturing
(9) Infilling Pennsylvanian shale

(10) Chalcedony
(11,12,13) Grain-to-grain pressure

..............................................................................................................................

(11,12,13) Stylolitization
(11,12,13) Fracturing
(14) Calcite cement C1
(15) Dissolution of calcite

(16) Megaquartz

(17) Dissolution of silica

(18) Fracturing

(19) Pyrite

(20,21,22) Calcite cement C2

(20,21,22) Recrystallization of
Dolomite

| 1(20,21,22) Barogue Dolomite

TIME ——>

I POROSITY DEVELOPMENT

(Ramaker et al., 2014)




Porosity Enhancement in Silica Phases




Similar Late-Stage Paragenesis in All Units
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Fluid Inclusion Evidence for Hydrothermal
Fluid

* Primary Fluid Inclusions in
Arbuckle Baroque Dolomite

* Primary Fluid Inclusions in
Mississippian Baroque
Dolomite
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Evidence for Hydrothermal Flow

Temperature [deg C]
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Stage 1 - Hydrothermal Flow

Megaquartz Cement

* Primary FlIAs in Arbuckle
Group MQ2 displaying
heterogeneous entrapment
with variable liquid-gas ratios
in two-phase flincs

* Primary FIAs in Mississippian
MMQ displaying
heterogeneous entrapment
with variable liquid-gas ratios
in two-phase flincs




Stage 1 - Hydrothermal Flow
Salinity wt. % NaCl eq.

Arbuckle Group
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Stage 1 - Advective Fluid Flow - Megaquartz

Late Pennsylvanian (before Permian brine reflux)

A

Topographic high provided
hydraulic head for gravity-
driven fluid flow
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Stage 2 - Hydrothermal Flow

Homogenization Temperature (°C) Salinity wt. % NaCl eq. |
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Arbuckle Dolomite — 8/Sr/2%Sr vs. Temp.

Radiogenic values, higher temp = less rock-water interaction with carbonates

Arbuckle Group Baroque Dolomite 87Sr/26Sr vs. 6180

More radiogenic at top of Arbuckle - 071100
More radiogenic 87Sr/26Sr L 0.71050
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v more depleted 5180 values
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Thermal Structure During Stage 2 — Regional Fluid

Flow
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Oil Migration during Stage 2




Permian Reflux before or during Stage 2

Early-Mid Permian Time

A

High Salinity Reflux w/ Potential for Early Baroque Dolomite
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Advective Fluid Flow — Stage 2

Early-Late Permian Time (after Permian brine reflux)
Baroque Dolomite and Qil in Study Area
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Stage 2 — Warmer fluids at top of Aquifer

A Study Area =——> B

At some unknown point during fluid
Sea . migration, the temperature-controlled
Permian | density gradient begins to influence fluid
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PM-21

Stage 2 Discussion: Subaerial vs. o
Hydrothermal Porosity :

Enhancement in Chert .\I /
POROUS CHERT 1/ PORE::V():HERT 2
= NE cores contain 55% chert; 25% of (eary)  PoROUS cuerT
which is porous : - = | /
= SW cores (close to fault) contain 37% = .
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= Early dissolution is only in the
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550,
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"Hydrothermal advective flow,
concentrated toward the top of the
Arbuckle-Miss. aquifer and closely
associated with fracture zones,
enhanced porosity
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Stage 3 - Hydrothermal Flow

Late-stage

Diagenetic Events

Arbuckle Group
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Stage 3 - Calcite 3/Sr/2°Sr

Depth (Ft)

Arbuckle Group and Mississippian 87Sr/26 Sr vs. Depth
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fluids migrate vertically through interval
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Stage 3 - Fracture-Controlled Hydrothermal
Fluid Flow and Calcite-Laramide?
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Conclusions
* Three-stage evolution of hydrothermal systems

 Two stages of regional advective flow
— Connate fluids + gas followed by concentrated brines + oil

— Mississippian to Cambrian-Ordovician section acted as a
regional aquifer and Pennsylvanian acted as a leaky confining
unit.

— In the regional aquifer cross-formational connections allowed
lower density, warmer fluids to concentrate at the top of the
aquifer, and this structure could be a very useful model for
understanding porosity in oil-and-gas reservoirs

— Reservoir porosity is partially controlled by hydrothermal fluid
migration enhancing the porosity in areas where fractures and
faults led to preferred hydrothermal fluid flow, especially
close to the top of the regional aquifer



Conclusions

e Better porosity is related to late structure and
stratigraphic control on fluid flow

* A third stage of hydrothermal fluid flow was localized by
later (possibly Laramide) faults and fractures and led to
localized hydrothermal systems

— The impact of the third stage is as yet unknown, but clearly
indicates localized vertical connections across reservoir units
that allowed fluid flow

* All three stages clearly predate the modern fluid
structure in the system

Details and data available from: KI‘ ‘

Kansas Interdisciplinary Carbonates Consortium
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