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Abstract 
 
Over 1,800 feet of continuous core, combined with log and 3-D seismic data, illustrate a stratigraphic succession of high-frequency 
progradational episodes composed of wave-modified deltaic and shoreface deposits within an overall second-order lowstand systems tract in 
the lower and middle Frio Formation in Redfish Bay, Texas.  
 
This second-order succession is divided into 11 higher order (4th or 5th) sequences. Upward-coarsening parasequences display a transition of 
depositional environments from offshore to lower and middle shoreface. The typical facies succession within a parasequence consists of gray, 
massive mudstone interbedded with thin (0.1- to 0.2-ft), very fine grained, wavy rippled sandstone with Zoophycus at the base followed by 
alternating fair-weather and storm-dominated deposits. The fair-weather suite is characterized by highly bioturbated, very fine to fine grained 
sandstone, with Cruziana ichnofacies including Planolites, Thalassinoides, Asterosoma, Paleophycus, Chondrites and Rosselia. Remnant wavy 
laminations or ripples are also preserved. The coarser and cleaner sandstones of storm origin are massive and weakly bioturbated with 
Ophiomorpha. Parallel and low-angle laminations with possible hummocky cross-stratification and ripples are present. The lower part of the 
ARCO #470-4 core (10,335 to 11,460 ft), parasequences 1st - 7th is composed predominantly of low-energy deposits in a distal setting, 
indicated by the dominance of the deposit-feeding infauna over the suspension-feeding infauna. Soft-sediment deformation occurs below 
shoreface sandstones, implying an unstable substrate and rapid deposition in middle- to outer-shelf environments. The upper part of the cored 
interval (9,651 to 10,335 ft), parasequences 8th - 11th, has more opportunistic trace fossils with vertical to subvertical structures (mostly 
Ophiomorpha and possible Diplocraterion) and records proximal shoreface successions. The uppermost 285 feet core consists of fine- to 
medium-grained, sparsely bioturbated sandstone with Skolithos Ichnofacies including Ophiomorpha, Diplocraterion and Paleophycus. The 
coarser grain size, the sparsely bioturbation with Skolithos ichnofacies, integrated with the presence of shell layers and mud chips indicate a 
proximal-shoreline setting. In any single parasequence, cleaner storm beds with coarser grain size and less bioturbation have better reservoir 
quality (porosity and permeability) than highly bioturbated fair-weather beds. 
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 Study interval is divided into 12 4th-order sequences, 
which compose an incomplete 3rd-order sequence. 
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 Sandstone body has very good lateral 
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Reservoir quality 
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 Reservoir quality in LST is higher because a 

proximal position of deltaic systems.  
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 Mudstone-filled and/or 
lined burrows (e.g., 
Ophiomorpha, 
Palaeophycus, and clusters 
of Chondrites) can 
decrease permeability. 
 

 Sand-filled burrows (e.g., 
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increase permeability. 

(Tonkin et al., 2010) 

 Burrows are important 
controls on reservoir quality 
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Conclusions 

 

 The study interval is an incomplete 3rd-order sequence, composed of 
LST, TST and HST sequences from bottom to top; 
 

 Wave-dominated deltaic systems are recognized from core 
descriptions, sandstone maps, and stratal-slice maps. The systems are 
also influenced by fluvial processes; 
 

 The sandstone-body continuity is very good along both depositional 
strike and dip; 
 

 Reservoir quality is controlled by sequence-stratigraphic framework at 
large scales; In high-frequency sequences, it is controlled by type and 
intensity of burrows. 
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