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Abstract 

 

The automation of repetitive tasks in borehole image data analysis increases efficiency and consistency, and delivers time savings that can be 

invested in more effective integration and interpretation. Such automation has been enabled by the development of multiple innovative 

technologies, three of which are considered here: the data-driven deterministic reconstruction of missing data to address incomplete coverage 

from wireline logs (and gaps in LWD images), the calibration and characterization of microresistivity measurements to provide quantitative 

resistivity values for petrophysical evaluations, and dynamorphic processing for image enhancement, avoiding the artifacts introduced by the 

ubiquitous dynamic normalization.  

 

Data reconstruction is based on a modified morphological components analysis approach in which features in the image are represented 

sparsely in an appropriate domain such that inversion of the sparse representation recovers the missing data uniquely and completely to the 

extent that the information in the measured parts is representative of that in the gaps. Reconstructed images are almost indistinguishable from 

full-coverage images for coverage loss up to 30%, and the method performs well for coverage loss up to about 50%. Quantitative resistivity 

moves away from the previous practice of ad-hoc normalization. It imposes a model-derived calibration and correction for borehole effect. We 

have developed a high-fidelity numerical model of the whole measurement system; this shows that each measurement electrode has its own 

unique calibration coefficient, and that these vary in a systematic way across the button array. The response to environmental factors such as 

standoff is similarly unique for each button. Visualization addresses the challenge of rendering high dynamic range resistivity data with a 

necessarily limited color palette. Among the newly developed visualizations is the dynamorphic image which splits the data into sharp and less-

sharp components, scales them independently then re-combines. The innovations have been used with new edge detection algorithms to enable 

the robust automated detection of planar boundaries. In a test involving 350 m of image data from a fractured shale-sand interval, the new 

detection algorithm ran 30 times faster than a leading commercial auto-dip program, detected substantially more features, and false picks were 

reduced by more than an order of magnitude. 
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Motivation & Outline 



Image Reconstruction - Inpainting 
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 CMI circumferential overage is 100% in 6-inch wells, reducing to 50% in 
12 ¼ inch wells 

 MCA Inpainting  reconstructs the whole image – including missing parts 



Bertalmio et al (2000) 

  The answer is “Yes” – if we can make them mimic the brain 

  The brain uses cues from the visible parts to fill the gaps 

  The data is missing, but the information may not be 

  Formalized in Morphological Component Analysis (MCA) 

Humans Are Skilled Inpainters…..   
……..Can Machines be do the same?  



MCA – Conceptual Overview (1 of 2) 
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Analysis 

Synthesis  
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A.  Pure sine wave with gaps 

B.  Transform  domain (in this case Fourier) 

C. Inverse domain fills the gaps perfectly. 
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Projection 

Reconstruction  

A.  Original signal 

B. Projection (using FT, DCT, wavelet, curvelet.....) 

C. Sparse representation of projection 

D. Reconstruction 
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Representation 

Several transforms may need to be 
considered to find maximum sparsity  
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MCA – Conceptual Overview (2 of 2) 



Inpainting Results (1) 

 30% coverage loss example 

 A. Continuity of the fine 
laminations maintained. 

 B. Continuity of fine 
laminations and irregular high-
angle fracture maintained. 
Halo effect preserved. 

 C. High contrast boundaries 
inpainted successfully 

 D. Irregular boundaries and 
complex textures inpainted 
successfully 
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Original Reveal 360 

Inpainting Results (2) 
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Inpainting Results (3) 

a) 1080 

1080.2 

1080.4 

:[ 
R 1080.6 1;:­

c3 

1081 

b) 
1080 

1080.2 

1080.4 

50 100 150 200 250 50 100 150 200 250 



R2 

  Method evaluated on field data (clastic formations) and synthetic images 

  Full-coverage field data artificially obscured to simulate partial-coverage data 

  Better than 95% reconstruction accuracy for coverage loss up to 30% 

  Reconstruction accuracy falls-off almost linearly with coverage loss (A) 

  Reconstruction accuracy is independent of dip up to about 80 degrees (B) 

B. Synthetic Images A. Field Data 

Inpainting Operating Envelope   



Quantitative Resistivity 
  Image-driven petrophysics requires quantitative resistivity values 

  Limitations of 1st & 2nd generation WBM tools led to ad-hoc normalizations 

 High dynamic range is necessary but insufficient for quantitative resistivity 

 Combination of calibrated measurement and high fidelity model allows 
characterization then exploitation of high dynamic range responses 



Quantitative Resistivity 
Resistance R = Voltage / Current 

Resistivity (ρ) = K.R 

BH Corrected Resistivity (ρcorr) = ρ.∆K 

K  = k-factor for standard conditions  

∆K  = BH correction factor  

Requires high dynamic range 

  K-factors vary systematically across the button array  
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Quantitative Resistivity - Results 



Appropriate Visualization 

 Data must be visualized optimally to 
give machines the best opportunity 
to pick features 

 High Dynamic range of CMI is a 
challenge from a rendering 
perspective 

 Dynamorphic Processing splits 
images into low and high spatial 
frequencies, renders them 
separately, then recombines 

Static  Dynamorphic  



The Problem with Dynamic Normalization 

 Dynamic normalization can create phantom features 

 Static images reflect the true structures, but only if optimally scaled  

 Dynamorphic images have the desirable attributes of a Dynamic image 
but without the phantoms 

Static  Dynamic  Dynamorphic  



 VLS visualization shines a virtual light onto a 
landscape constructed from resistivity values 

 Features at particular orientations of interest 
are preferentially enhanced by changing the 
elevation and azimuth of the light 

Appropriate Visualization – Virtual Light Source 



In-Painted  Virtual Light 
Source  

Appropriate Visualization – Virtual Light Source 



           

In-Painted  Virtual Light 
Source  

Appropriate Visualization – Virtual Light Source 



 It takes many hours to pick features manually from a long image 

 Most common task is the detection of planar geological boundaries 

 Multiple methods exist for machine picking, but utility limited by high 
rates of false positives 

Automation Example – Picking Planar Features 

Multi-agent picking example 



 Old methods are prone to false picks associated with: 
 Background noise 

 Connected segments that belong to different features 

 One feature being detected multiple times 

 Dramatic reduction in false positives achieved using multiple 
“agents” applied to inpainted images 

Automation Example – Picking Planar Features 

Multi-agent picking example 



 Create inpainted, dynamorphic image 
 Detect edges using Lindeberg algorithm 

extended to include non-maxima suppression 
and edge cleaning 

 Validate using Phase Congruency (insensitive  
to amplitude contrast) 

 Detect sinusoids by searching validated edges 
 Sinusoid parameters estimated exploit the 

assumption that valid sinusoids occur as one 
cycle in an image 

 Fully automatic – no parameter selections 

Robust Method 

Edge exists where frequency 
components are in phase 

Automation Example – Picking Planar Features 



Sub-Parallel Beds 
Crossing Features 

Vertical interval: 4m 

High-Angle  Features 

Feature Picking – Results (1 of 2) 



Indistinct Beds 

Vertical interval: 4m 

Feature Picking – Results (2 of 2) 



  MCA inpainting reconstructs the whole image, including missing data, 
in a way that honours the information in the measured parts 

  Design calibration factors unique to each button enable quantitative 
resistivity for use in image-driven petrophysical applications 

  Dynamorphic processing allows images to be rendered with wide 
dynamic range 

  The Virtual Light Source illuminates features at orientations of interest. 

 Robust multi-agent detection reduces sinusoid pick times from the 
order of many hours to a few minutes, and the results are reliable and 
wholly reproducible. 

Wrap-Up 
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