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Abstract 

 
Around 1950 Gus Archie, working at Shell Oil, changed petroleum exploration by developing a theoretical foundation for e-log 
interpretation based on certain electrical properties of rocks.  From this discipline of petrophysics, Archie’s Equation is 
universally used and needs no introduction.  At about the same time Claude Shannon, working at Bell Labs, changed 
communication by developing a mathematical structure for messaging.  Oversimplifying the explanation here, information 
theory uses the received signal to assess if data have changed the probability that some predictable outcome is valid.  
Verification of the expected outcome is redundant and provides no new information.  New data add information only if they 
change the weight of evidence to suggest that an unexpected event (a surprise) has occurred.  For information theory, the 
message itself is understood only to be a choice between possible alternatives; the actual meaning of the message is not relevant. 
 
This paper proposes that the principles of information theory provide a suitable framework for a “theory-less” evaluation of 
triple-combo log data by identifying unexpected or anomalous pairings in key log parameters.  Further, geologic interpretations 
derived from these anomalies generate significant results for exploration in shale resource plays. 
 
Examples of key cross-plot pairs (independent variable -v- dependent variable) from log data will be shown: (1) shale (clay) 
volume -v- average neutron-density porosity and (2) average neutron-density porosity (log scale) -v- resistivity (log scale).  
Where the dependent variable is predictable from the independent variable (typically a linear trend), redundancy dominates and 
no significant information is present.  In contrast, an anomalous positive deviation of the dependent variable from the 

mailto:pedevine53@gmail.com


predictable baseline trend signals “surprising” information and the probability is quantifiable based on the amount of deviation.  
From these plots, we can make geologic interpretations concerning (1) effective porosity (PHIE) in the shales and (2) 
hydrocarbon charge (HCSAT). 
 
In this way, the meaning of the message is separated from the probability that it is valid. Pay zones can be identified on the logs 
and mapped based on the coincidence of a high probability for effective porosity and hydrocarbon saturation. Finally, inferences 
on pore structure and reservoir deliverability can be developed by using the PHIE and HCSAT parameters in a meta-data 
analysis. 
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CLAUDE SHANNON -vs- GUS ARCHIE 

Information Theory as a Guide to Log 
Evaluation without Petrophysics 

RMS-AAPG – DENVER, CO – JULY 22, 2014 



• This presentation covers a log evaluation method I have been using for about 5 
years to look at unconventional reservoirs - mainly shales. Just last year I first read 
about Claude Shannon and some ideas from Information Theory. I was struck by 
just how well certain principles supported my techniques and possibly explained 
why I can produce what I think are successful results from a fairly simple process. 
This is what I would like to share with you today. 

 

• NOTE: Maps that were shown during the session at the RMS-AAPG in Denver, 2014, 
were released by WPX Energy for presentation only.  Because these maps were not 
released for publication, certain displays that appeared in the original have been 
modified or deleted for the current production. 

CLAUDE SHANNON -vs- GUS ARCHIE 

Information Theory as a Guide to Log 
Evaluation without Petrophysics 



WHAT’S AHEAD 

TALI< ORGANIZATION EXPLORATION APPROACH 

PREMISES of the EVALUATION METHOD I SIMPLE - EMPIRICAL - PRAGMATIC 

METHOD SETUP and CALCULATIONS I PROBABLY APPROXIMATELY CORRECT 

EXAMPLE RESULTS UNIQUELY COMPETITIVE ANSWER 



• Here’s what’s ahead. I will start by describing premises of the method. Then I will 
move to a discussion of the actual calculations.  And finally, I will end with some 
examples.   

• Each of these topics has a corollary that relates to my approach toward any 
exploration project.  First, I want the concepts to be simple, empirical and 
pragmatic; second, I want the results of my process to be probably approximately 
correct (this has a formal definition that will be described in an appendix slide if 
you are interested); and third, I want my answers to provide unique opportunities 
for action (I want to see things that others have missed).  

WHAT’S AHEAD 



GUS ARCHIE: PETROPHYSICS    

DETERMINISTIC 
BASED ON MEASURED PARAMETERS 



• In the late 1940s/early 1950s Gus Archie, working at Shell Oil, found a need for 
formal evaluation of reservoir rocks, focusing mainly on the response of porosity, 
resistivity and water saturation in well logs.  Petrophysics was born.  Archie's 
equation shown here is the most iconic expression of petrophysics and you can see 
by the formula that this work set the future course of petrophysics as a 
deterministic discipline. 

GUS ARCHIE: PETROPHYSICS    



CLAUDE SHANNON: INFORMATION THEORY 

PROBABILISTIC 
BASED ON DATA STRUCTURE 

RESERVOIR WELL LOGS 



• At about the same time, Claude Shannon was working at Bell Labs and attempting 
to develop a mathematical structure of communication.  He saw the problem as 
one of receiving information at one place that was generated at another yet 
transmitted through a noisy system.  Based on his work as a codebreaker in WWII - 
where an infinite number of potential messages was possible - his answers had to 
be probabilistic.  If we consider our reservoir to be the source of a message and 
well logs as the receiver – we see that Archie and Shannon were really in the same 
business. 

CLAUDE SHANNON: INFORMATION THEORY 



INFORMATION THEORY (1) 
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• Information theory uses the received signal to assess if new data have 
changed the probability that some predictable outcome is valid. 

• Veri f ication of the expected outcome is redundant and provid es no new in formation. 

• New dat a add in formation only if they ch ange the weight o f evidence to suggest that an 

unexpected event (a surprise) has occurred . 

• For in formation theory, the message itself is understood only to be a choice between 

possi b lea ltern atives;the actual mea ning of the message is not relevant. 



• Let's start with a little explanation of information theory – at least what I 
understand as the important points.  Information Theory uses the received signal 
to assess if new data have changed the probability that some predictable outcome 
is valid - verification of the expected outcome provides no new information; only 
data that bring a surprise carry new information.  

• For example – here we have a predicted outcome – in this case a blue circle – and 
if the new data verify the expected result, they are redundant and carry no new 
information.  I predict X and I get X.  If however we get an unexpected result that is 
NOT X – here, a red square – then new information is present.  This surprise is the 
hallmark of new information.  Finally – the concept only concerns itself with the 
choice among alternatives (I am going to get either a predicted result or a surprise 
result), the meaning of the message is not relevant in determining information 
content. 

INFORMATION THEORY (1) 



INFORMATION THEORY (2) 
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• Here, I have a simple case using a GOOGLE search example to compare verification 
and surprise in information theory.  If I type the letter “A”…the GOOGLE search 
predicts that I am looking for AMAZON.  If I am indeed searching for AMAZON, the 
letters -MAZON simply verify GOOGLE’s prediction; they are redundant and typing 
these letters into the search will provide no new information.  If however I am 
searching for APPLE, additional information is required for an accurate prediction.  
And if I am looking for APPALACHIAN, then considerably more information will 
apparently be needed. 

INFORMATION THEORY (2) 



INFORMATION THEORY (3) 

• Application to data cross-plots 
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• The method I am going to show today uses data cross-plots to determine if our 
received signal indicates verification or surprise.   

• In “A” -on the left- the equation for the blue trendline predicts a “y-trend” value 
from any x input.  Here, any data that fall along the trendline offer only redundant 
verification – but the red squares here do provide new information and the 
distance from the trendline is a measure of surprise.  This distance quantifies the 
probability that these anomalous data are not part of the “y-trend” and therefore 
contain new information.   

• In “B” -on the right- we see that the more uncertain we are about the “y-trend” 
relationship – the more uncertain we will be about our surprise as the trend 
results begin to overlap the anomalies.  Next we will look at an example of surprise 
from a cross-plot of real-world data to more fully develop the concept. 

INFORMATION THEORY (3) 



ANOMALOUS DATA REPRESENT NEW INFORMATION (1) 

• Population Height – Weight Example • Population Height – Weight Example 
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• Here we have a plot showing the US Navy’s trend of acceptable height (x-axis) 
versus weight (y-axis) for its sailors which we can assume represents a trend for 
the general population.  A recruit needs to fit into this trend to do the work 
involved in operating a modern warship. 

ANOMALOUS DATA REPRESENT NEW INFORMATION (1) 



ANOMALOUS DATA REPRESENT NEW INFORMATION (2) 

• Population Height-Weight Example 

• SURPRISE! associated with the Broncos data 
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• If we add the height-versus-weight data from the Denver Broncos football team we 
see a different distribution. These are not really extreme individuals; extreme data 
would fall at the ends of the trend by definition.  Data from the Broncos are more 
properly characterized as anomalous types; and, if you saw some 6-foot-5, 300-
pound dude in your doorway, I dare say you would experience considerable 
surprise.  Anomalies produce surprise, extremes do not.  Further, you could use 
the characteristics from the trend of the average population as a filter to identify 
candidates for the NFL.  The height-weight data of each individual will be generally 
successful in predicting members of the general population who will never play in 
the NFL.  But not always.   

ANOMALOUS DATA REPRESENT NEW INFORMATION (2) 



ANOMALOUS DATA REPRESENT NEW INFORMATION (3) 

• Population Height-Weight Example 

• SURPRISE! associated with the Broncos data 
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• I will end this discussion by looking at two sections (A and B) through the data.  
Note that at “A” there is a discrete separation between the trend and the 
anomalous data; whereas at “B”, the distributions show significant overlap. 

ANOMALOUS DATA REPRESENT NEW INFORMATION (3) 



DATA MEASUREMENTS 

The BASELINE is essentially a filter 
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• These images show the same concept from the previous slide but here we are 
looking at a cross-section of the data distributions.  In “A”, the predictable trend is 
well separated from the surprise data and we would have no problem recognizing 
either distribution.  In “B”, however, I am showing a large amount of overlap 
between the two distributions which is much more realistic for the actual well-log 
data we’ll be evaluating.   

• Here, I don't have a way to identify a regression for the trend distribution, so I 
need a slightly different solution.  I instead draw a baseline somewhere in the low-
response data and use that as the source of measurements.  In this way I can still 
quantify the probability that I am either in the trend data --with low numbers-- or 
in surprise data --with high numbers.  Ultimately, the baseline acts as a filter that 
separates verification from surprise. 

DATA MEASUREMENTS 



FILTERING NOISE FROM SIGNAL 

Potential errors in signal/noise detection are well known: 
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• Finally, we have to be aware of the limitations of the method.  Two potential errors 
in signal detection based on data filtering are well known.  (1) If we identify a 
surprise event in noisy data but this event is actually part of the trend, we have a 
false alarm or false positive.  (2) And we can miss information in data from the 
minimal tail of the anomalous distribution where they overlap a wide (noisy) 
trend.  Thus we are again reminded that the data analysis based on Information 
Theory is probabilistic, not deterministic. 

FILTERING NOISE FROM SIGNAL 



WELL LOG DATA: INFORMATION FILTERS 
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• So now we turn to geologic data from well logs.  Data here are from a well in the 
Eagle Ford Shale play of SE Texas.   

• On the left I have a cross-plot of v-shale versus porosity.  The question I want the 
porosity filter to address is: Does shaliness predict porosity?  If so, data in that 
trend have no information content.  In this case there is a very obvious 
discrimination between the predictable trend that relates shaliness to porosity and 
a second surprise trend.   

• The plot on the right shows porosity versus resistivity both with log10 scales to 
keep the trends looking linear.  Here I want the resistivity filter to ask: Does 
porosity predict resistivity?  If so -again- there is no information content.  As before 
we have a pretty obvious separation of trend and surprise data. 

WELL LOG DATA: INFORMATION FILTERS 



WELL LOG DATA: INFORMATION CONTENT ONLY 
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• Next, I am now showing the two previous cross-plots with baseline filters drawn in 
the low-response data.  I have also drawn lines of equal distance from the baseline 
to quantify surprise.  The probable information content increases with distance 
from the baseline filter.   

• In the log display below I have the porosity-anomaly calculations (in blue) scaled 
on the left – and increasing upward; the calculation for the resistivity anomaly (in 
red) is scaled on the right and increases downward.  Coincidence of the two 
anomalies is colored green where the two curves cross.  Of course the anomalous 
porosity and resistivity interval here comes from the prolific shale reservoirs of the 
Eagle Ford.  

• Congratulations, you have found your first unconventional target by simply 
quantifying the information content of the data.  At this point I only identified 
where we received information; I made no attempt yet at interpreting a meaning 
for the message.  The other examples I have for you today are from the Niobrara of 
the DJ Basin and nothing there will be quite so obvious.  And of course we do want 
to try to interpret the messages contained in that information.  Let’s go there next. 

WELL LOG DATA: INFORMATION CONTENT ONLY 



POROSITY ANOMALY: INTERPRETATION 
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• First we will take a look at the setup for the porosity anomaly.  This filter is trying 
to remove the effect of clay content on the total ND porosity measured by the 
logs.  If you can predict porosity based on shale content, that's not a porosity you 
want – no matter what the magnitude.  The baseline filter is drawn with some 
small percentage of the data below the trend.   

• You will notice in the first plot on the left -in the raw data- that the baseline 
intersects the porosity axis some 4 units above the origin.  I always bulk shift the 
total porosity data so that the baseline passes through the origin.  This is a 
reasonable step for porosity normalization since by definition the porosity 
contributed by clay should be zero when the clay content is zero.   

• Now I’m in a position to interpret the message identified by the porosity filter: a 
greater distance from the baseline represents a larger porosity anomaly.  A larger 
porosity anomaly indicates a higher probability that the reservoir is transmitting a 
signal for effective porosity (PHIE) not influenced by clay content. 

POROSITY ANOMALY: INTERPRETATION 



RESISTIVITY ANOMALY: INTERPRETATION (1) 

Archie Parameters: Effect of a variable “m” 

The effect of a variable "m" in a porosity-resistivity cross-plot 

is to produce a curved trend of wet resistivity (Ro). 

SOURCE: Cluff et al., RMS-AAPG, 2008 



• Next we turn to the resistivity anomaly.  One of the most interesting developments 
in petrophysics in the past 10 years or so has been the work by Alan Byrnes, Bob 
Cluff, and others showing that the Archie exponent “m” is not constant but varies 
with relation to reservoir porosity.  Of course the work shown here was for 
Mesaverde tight sands, but I believe this principle --of variable “m”-- applies to all 
reservoirs…we just don’t know what equations to use.  I think this presents a 
serious challenge for the deterministic efforts at log evaluation -especially in 
exploration- while at the same time…I believe this opens the door for a 
probabilistic approach.  So, the important point here becomes…what effect does a 
variable “m” have on a porosity-resistivity cross-plot?  The result turns out to be a 
curved shape to the wet resistivity trend – Ro.  

RESISTIVITY ANOMALY: INTERPRETATION (1) 



RESISTIVITY ANOMALY: INTERPRETATION (2) 
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• Here we have an example of the curved Ro trend produced by Cluff's equation 
from the previous slide.  You can see -on the left- why this curve happens.  The 
slope of “m” to each point on the Ro trend becomes progressively lower as 
porosity decreases.  Examples at 10% and 1% porosity are shown.  But if I'm 
looking for a flat baseline filter over a reasonable porosity range this actually 
causes no problems -as shown on the right.   

• I can create a viable analysis by using a tangent to the curve as long as I also use 
the minimum RWA projected by the line and not what I supposedly “know” is the 
actual Rw.  Note that the slope of the apparent Ro trend here is .83, a value which 
is way outside any range a traditional petrophysicist would accept; but it is 100% 
correct on an empirical/pragmatic basis.  

• NOTE: For a predictive application like this, the variables need to be properly 
positioned.  Porosity is the independent variable and needs to be on the x-axis; 
resistivity is the dependent variable and should be located on the y-axis.  So 
please…no more Mr. Pickett. 

RESISTIVITY ANOMALY: INTERPRETATION (2) 



RESISTIVITY ANOMALY: INTERPRETATION (3) 
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• Here is the last image for the resistivity anomaly setup with some actual Niobrara 
well log data covering a range of maybe more than 16 porosity units.  The idea is: 
If you can predict resistivity from porosity you don't want that rock; in fact, Archie 
informs us that this is most likely a wet reservoir.  Note that the flat baseline I’ve 
drawn is both tangent to the variable “m” trend and…at the same time…captures 
the minimum RWA of the data set (slope= 1.39 and RWA= .17 ohmms).   

• In summary: these concepts have shown that I can produce almost exactly the 
same analysis as the deterministic approach by just using the internal structure of 
the data.  I don’t have to know anything else.  In step 1, I quantify the surprise data 
using the baseline filter.  And now, in a second step, I can produce an 
interpretation of the message by converting the resistivity anomaly to an RWA 
ratio and applying the saturation exponent.  The resulting interpretation is this: the 
greater the resistivity anomaly – the greater the probability that the reservoir is 
signaling HC saturation. 

RESISTIVITY ANOMALY: INTERPRETATION (3) 



Isn’t this just a Pickett plot? 

 For information theory, the message itself is understood only to be a choice between possible 
alternatives; the actual meaning of the message is not relevant. 

No – this is a two-step process: 
(1) Calculate the resistivity anomaly based on distance from the baseline 
(2) Interpret the anomaly with a second algorithm designed to assess the 

probability of a specific, desired condition (HCSAT or something else) 



• Many of you might be thinking…sure, you changed the axes…but, but you’re interpreting HC 
saturation from porosity and resistivity…so, isn’t this really just a Pickett plot?  The simple 
answer is no.  For example, in unconventional resource-play assessment, a resistivity anomaly 
can have another, professionally acceptable interpretation: as an indicator of organic content.  
Consider Passey’s 1990 method commonly referred to as delta-log-R.  We are instructed to 
graphically position a sonic DT curve (with linear scale) against a resistivity curve (with log10 
scale) and identify zones where DT doesn’t overlay log10(RT).  This is just a caveman way of 
looking for resistivity anomalies.  Baseline data occur where the two curves coincide: DT 
predicts log10(RT) and delta-log-R=0.  Surprise information occurs where the curves diverge: 
delta-log-R>0.   

• The slide shows data from the Eagle Ford play with two curves plotted against depth.  The 
delta-log-R calculation is shown in black (scale to the left) with my resistivity anomaly in red 
(scale to the right).  The units for both curves are in log10(RT) and the data are practically 
identical.  The message, delta-log-R, actually has no unique meaning.  Organic content can 
only be quantified from the delta-log-R message by applying a second algorithm to 
compensate for thermal maturity (LOM) as directed in Passey’s article.  Or, HC saturation can 
be estimated by converting the resistivity anomaly to a RWA ratio and applying the saturation 
exponent.  It’s a subtle point captured here by Information Theory: anomalous data only 
assess the signal for surprise to determine if there is new information which suggests a 
change in probability that something unexpected has occurred.  The message truly does 
require a second interpretation for it to have a geologic meaning.   

• Be sure to think about this the next time someone comes into your shop and proudly 
presents a delta-log-R anomaly without the LOM correction.  What is the true meaning of 
this anomaly…organic content or HC saturation? 

Isn’t this just a Pickett plot? 
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• I want to show some other examples of the porosity and resistivity anomaly in the 
Niobrara section from different areas around the DJ Basin.  These areas will be 
shown on a map later in the presentation.  Each cross-plot pair represents data 
from a single well located in the noted area.  The baseline filters are all established 
by the methods just described using only the internal structure of the data.  You 
see some minor variation in the slopes and intercepts of the trends but basically 
the baselines look similar and they all look reasonable.   

• Now we may disagree about the exact positioning of the baselines for analysis of 
any well’s data, but those differences can be resolved easily.  So, an added 
advantage of this method in an exploration setting…is that once a team has agreed 
on these baselines, there really is no further disagreement on resulting 
interpretations. 

• NOTE: The NE Weld Co. well (starred) was used in our detailed examination of the 
porosity and resistivity baselines and will be used several more times in the 
presentation as the type example of the log evaluation method to which other data 
are compared. 

BASELINE / ANOMALY COMPARISONS 
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• I think at this point I owe you a look at these evaluations in a log format, versus 
depth.  On top are the two examples we just looked at in our deep dive and below 
is a log that presents all these results again in a form you may prefer instead of the 
cross-plots.   

• In Track 1 you see the V-Shale, Track 2 presents Resistivity in red with the Baseline 
filter in blue – the amount of surprise is shown in green as separation between the 
two curves and basically defines the extent of the petroleum system.  As is typical 
in mature organically-rich shale plays, hydrocarbon saturation is not the critical 
issue as shown by the wide separation through the Niobrara interval.  Track 3 
shows the normalized porosity in brown with the baseline filter in black; the 
surprise anomaly is shown as the difference between the two curves in yellow.  
The narrow separation here does identify a critical issue in this play: storage and 
deliverability from the rock matrix.  And finally Track 4 shows the porosity anomaly 
increasing upward and the resistivity anomaly increasing downward.   

• Intervals in which the two anomalies coincide are colored red in Track 4 and 
indicate sections with the highest probability of having effective porosity that is 
also HC saturated. These are of course the prospective target intervals.   

DJ BASIN: NIOBRARA EXAMPLE (LOG) 
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• We turn to an area of the DJ Basin just NE of Denver.  This map shows measured 
depth to the base of the Niobrara.  Colored bubbles show the locations of 
contoured data.  Hot colors in both the grid and bubbles indicate shallower 
depths.  A west-dipping monoclinal flank with two synclinal centers is apparent.  
The four areas previously mentioned are highlighted for geographic reference.  
And finally, the location for the previous type log is indicated by a star in the NE 
Weld County area.   

• A cross-section showing continuity of the stratigraphy and log evaluations both 
updip and downdip of the type well is included in the next slide. 

DJ BASIN: NIOBRARA EXAMPLE (LOCATION) 



DJ BASIN: NIOBRARA EXAMPLE (PHIE - HCSAT) 



• This six-well stratigraphic cross-section shows the Niobrara interval from the heart 
of the map area.  By design, the stratigraphic nomenclature is generalized to avoid 
any confusion based on that topic.  The log curves are the same as what was 
described in the type-well slide.  The generally continuous character of the 
Niobrara petroleum system across this area is fairly obvious based on the 
ubiquitous resistivity anomaly.   

• The average effective porosity and HC saturation interpreted from the anomalies 
for the identified pay interval are noted below each log.  In general, PHIE 
decreases into the basin and HCSAT increases into the basin.  These are typical 
characteristics of shale resource plays and…similar to the log display…the most 
prospective areas start where the best porosity anomaly intersects with the best 
saturation anomaly.  As for most oil resource plays in mature, organic-rich shales, 
the critical issue doesn’t appear to be HC saturation…it’s reservoir quality and 
resource deliverability.  The obvious pay interval highlighted here is significant due 
to the development of a superior porosity anomaly. 

• The two parameters, PHIE and HCSAT, represent just the first steps to a process in 
which these are combined with other data from primary analysis (v-shale and 
interval thickness) and meta-data evaluation for an increased understanding of 
reservoir deliverability.  Some interesting techniques and results of the meta-
analysis are described next. 

DJ BASIN: NIOBRARA EXAMPLE (PHIE - HCSAT) 
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3) BVH and PERMEABILITY, FLUID COMPATIBILITY 



• In the rest of the presentation, I want to move past the obvious messages of the 
simple anomalies to a different, higher level, evaluation.  These meta-data include 
bulk-volume hydrocarbon (BVH=PHIE x HCSAT) and bulk-volume water (BVW=PHIE 
x (1-HCSAT)).  The relationships among the primary parameters and the meta-data 
can be seen in the cross-plot shown here.  This plot can be used in log evaluation, 
to compare data from the ½-foot depth step in a single well; or in mapping, to 
compare the average properties of a pay interval among a series of wells. 

• I am going to review results from three topics shown on the slide which I hope will 
expose you to interpretations you have never considered before.  These include: 
(1) a look at burial history through bulk-volume water, (2) an evaluation of pore 
structure with the correlation of PHIE and HCSAT, and (3) using bulk-volume HC for 
permeability and fluid compatibility evaluation. 

MESSAGES IN THE DATA STRUCTURE 



BVW and BURIAL MATURITY 



• The only way to make this discussion brief is to baldly state the hypothesis/conclusion first: 
BVW is the single best metric of burial maturity available from log data, including PHIE, 
HCSAT, BVH and BVW.  BVW is the only parameter that shows an unrelenting, unidirectional 
reduction during burial history.  These concepts are illustrated in the PHIE-HCSAT cross-plot 
with a series of lines labeled as maturation trajectories.  In this plot each point represents the 
average BVW from a single well calculated for the Niobrara “pay” interval (shown previously 
in the type log).   

• When water is the movable fluid phase, BVW is reduced by water expulsion with porosity 
loss during compaction coupled with increasing HC generation and higher HC saturation.  This 
phase of the burial history is represented by maturation trajectories sloping upward from the 
lower right corner of the plot toward the upper left.  Peak HC saturation is attained when the 
reservoir reaches irreducible water saturation (SwIRR) and hydrocarbons become the 
primary movable fluid phase.  Thereafter, porosity reduction continues by compaction; 
however, the maturation trajectories turn downward toward the lower left corner of the plot 
as hydrocarbons are preferentially expelled and HC saturation decreases.  Here BVW also 
slowly decreases in response to lower porosity and associated lower SwIRR.   

• The end point for a shale taken to deeper burial depths should be a reservoir with (1) zero 
effective porosity, (2) residual HC saturation and (3) irreducible bound water located 
somewhere near the origin of the cross-plot.   The deepest data for the Niobrara in the DJ 
Basin have not yet approached these conditions and therefore do not demonstrate these 
effects.  The maturation trajectories beyond the dataset toward the plot origin represent 
hypothetical projections based on inference from other shale plays in other basins. 

BVW and BURIAL MATURITY 
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• The next topic requires some observation prior to discussion.  We are going to look 
at log data in three wells from updip to downdip across the NE Weld County area.  
Each plot shows the PHIE-HCSAT cross-plot for about 1500’ of data from a single 
well; pay-zone data are red, the rest of the Niobrara date are pink, and all 
remaining data are gray.  A regression trend correlating PHIE versus HCSAT for the 
pay-zone data is shown with a bold black line; the slope of that trend line is the 
focus of our attention.   

• In the most updip well (A) the slope of the trend is inverse (negative) with higher 
porosity having lower HC saturation.  In a distinct fairway along the middling 
depths of the basin (B) the slope changes to a positive trend with higher HC 
saturations associated with better porosity.  And then (C) the slope of the trend 
reverses again (unexpectedly) becoming negative in the downdip, deeper part of 
the basin.  

• So what’s going on here? 

PHIE-HCSAT SLOPE and PORE STRUCTURE (1) 
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• The character of the data correlations just described is revealing important details 
about the changing pore structure of the reservoir.   

• Consider a rock with (PHI=X) that is saturated with HC to SwIRR.  If we double the 
porosity of the rock (PHI=2X) by adding only pores of a similar size, the PHIE will 
increase but HCSAT will remain the same (not BVH…just HCSAT).  For this case the 
PHIE-HCSAT correlation will produce a flat line with very low positive or negative 
slope.   

• But, if we double the porosity by adding larger pores (and we have enough HC 
charge to maintain SwIRR) then the HCSAT of the reservoir will increase as porosity 
increases.  The increased pore volume is produced by addition of pore space with 
less total surface area and thus lower bound water volume than where pores of 
the same size are added.  This pore structure should imply better connectivity 
among pores and is signaled by the positive correlation between PHIE and HCSAT. 

PHIE-HCSAT SLOPE and PORE STRUCTURE (2) 
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• Continuing the theme, let’s look for explanations of the negative (inverse) slope.  
Again, if we double the porosity of the rock by adding larger pores but have an 
insufficient HC charge to maintain SwIRR then the result will be a lower HCSAT and 
inverse correlation of PHIE and HCSAT with lots of moveable water.  This seems like 
a reasonable (obvious) explanation for the inverse correlation seen in the updip 
portion of the reservoir where we have previously shown higher BVW. 

• But the negative slope seen in downdip wells suggests a more subtle change in 
pore structure.  Here I think we are increasing the pore volume by adding smaller 
pores.  Because the smaller pores carry a proportionally larger bound water 
volume (more total surface area) the increased porosity is associated with higher 
Sw and lower HCSAT.  The implication of smaller pores signaled by the inverse 
slopes in downdip areas is less reservoir connectivity and poor fluid deliverability 
of any kind.   

• These results can be confirmed with simple mathematical models using spherical 
shapes which demonstrate the positive or negative slope depending on the 
relationship between total pore volume and total surface area (although the 
correlations are not strictly linear).  Based on the previous discussions, it seems 
reasonable to expect better reservoir performance due to enhanced pore 
connectivity where the pay zone shows the positive correlation between the 
porosity and resistivity anomalies. 

PHIE-HCSAT SLOPE and PORE STRUCTURE (3) 
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• My last example uses average BVH from PHIE and HCSAT as a reservoir parameter that is 
intended to approximate (or at least correlate with) permeability.  We can see that this is a 
reasonable request of the data by looking at the modified Coates formula for permeability at 
the top of the slide.  Only two parameters are used in the calculation: (1) effective porosity, 
which I have on the x-axis of my meta-data plot and (2) HCSAT, represented on the y-axis of 
the plot (of course HCSAT=(1-Sw)).  We have to accept that all the samples are at SwIRR 
which is probably mostly true as long as BVW is low (<3-5%).   

• Permeability calculated from this Coates model is shown in the plot from the lower left of the 
slide.  Here you can see that the lines of iso-permeability and iso-BVH are generally parallel 
over a large portion of the diagram (shaded in yellow).  This is a reasonable association: for 
reservoirs with the same effective porosity, a reservoir that can generate a lower SwIRR 
(higher HCSAT) should have a better distribution of pore throats, and hence, higher 
permeability.  Note that 1% BVH correlates approximately with a permeability of around 200 
nanoDarcy and 2.5% BVH correlates approximately with a permeability of around 10 
microDarcy (a 50-times change in permeability for a 2.5-times increase in average BVH).   

• I have studied these data from a number of plays shown in the plot at the lower right of the 
slide and I can suggest with some confidence that the 2.5% average BVH (~10 µD) boundary 
serves as a useful operational lower limit for flow to liquids from an unconventional reservoir.  
And, owing to the smaller molecular size of methane, the operational lower limit to gas flow 
appears to occur at the 1.0% average BVH (~200 nD) boundary.   

• Areas of successful development can only be expected where the reservoir fluids are 
compatible with the mapped reservoir potential.  In many plays, the greatest probability for 
economic oil recovery is limited to specific areas (“sweet spots”) where the reservoir has 
permeability to liquids and a favorable pore structure including better pore connectivity.  

PERMEABILITY and FLUID COMPATIBILITY 
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• We have now come to the last round in this heavyweight bout between Gus Archie 
and Claude Shannon.  So who wins: is it petrophysics using a deterministic 
approach; or the probabilistic methods guided by Information Theory?   

• If we look for a weakness in each, I think the petrophysists would say that a 
probabilistic evaluation is not rigorous enough for what they do.  And now 
counterpunching for Shannon: I think that there may be more uncertainty to the 
deterministic approach than the experts typically let on. 

 

HEAVYWEIGHT BOUT: ROUND 15 



AND THE WINNER IS… 

For exploration ... 

. .. deterministic pitfall: 

It ain't what you don't know that gets you into trouble. 
It's what you know for sure that just ain't so. 

--- Charles F. Kettering (V.P. GM Research, 1920-1947) 

For exploration ... 

... a simple process of log analysis based on 

Claude Shannon's INFORMATION THEORY: 

(1) Is a probabilistic tool for identification of information/ signal. 

(2 ) Uses only the internal structure of the data (baseline/ anomaly). 

(3 ) Provides effective interpretations for the evaluation of resource 
pollential in unconventional reservoirs 



• Of course this is not really an either/or question.  But for exploration, the one 
deterministic pitfall expressed in the quote shown here has been enough to drive 
me to seek alternative answers.  

• I have described for you one probabilistic approach that I find unusually effective.  
I have shown you three things that make Claude Shannon’s Information Theory a 
useful guide for log evaluation in exploration. 

• Further, I have shown that meta-analysis of the basic log evaluation parameters 
can reveal important insights for interpreting basin-scale variations in reservoir 
quality and resource deliverability across an exploration play. 

 

AND THE WINNER IS… 
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• The emphasis in this talk has obviously been on a new approach to log evaluation 
without petrophysics.  I’m hoping you will leave the presentation thinking: “Well, 
that was certainly different.”  If that’s the case then my effort has been a success.   

• I want to thank everyone who helped make this presentation possible. 

THANK YOU 

and 
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• Earlier, I described the idea that, for exploration, I am trying to generate answers 
that are “probably approximately correct”.  You might have taken that phrase as an 
attempt at rhetorical humor; but, in fact, PAC Learning (PAC stands for Probably 
Approximately Correct) is a recently developed concept from the world of artificial 
intelligence and machine learning.  I think it is striking how well the scientific 
tenants from this learning framework correspond with the principles of Claude 
Shannon’s Information Theory and provide very effective guidelines for 
organization of an exploration study. 
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