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Abstract

Permeability is one of the critical parameters for evaluating and developing tight-sand and shale reservoirs. It is well known that
unconventional shale and tight-sand reservoirs are highly heterogeneous in mineralogy, fabric and pore structure. Pore-throats of
unconventional formations commonly have a wide range of sizes from hundreds to just several nanometers. Due to the
nanometer-size pores, gas transport in tight-sand and gas shale has a significant component of diffusion, consequently resulting
in strong pore-pressure-dependent gas permeability. Different approaches for a Klinkenberg diffusion correction to gas
permeability have been discussed theoretically by recent studies with limited experimental data. With nanometer-size pores, the
intrinsic or liquid permeability corrected from gas permeability also changes with different test gases. Furthermore, permeability
of unconventional rock depends on in-situ confining stress that also changes as the reservoir pressure depletes during
production. Therefore, for rigorous evaluation and development of an unconventional reservoir, it becomes necessary to
understand how intrinsic permeability changes with in-situ stress and the pore-pressure and stress-dependence of gas diffusivity,
which are difficult and time-consuming to determine separately in the laboratory. However, in present practice,

most engineering calculations and reservoir simulation software packages do not take the diffusivity as an input.

In this study, a simple but rigorous approach is suggested to practically determine the in-situ permeability (combined intrinsic
permeability and diffusivity) with consideration of the effects of pore pressure and in-situ confining stress. The permeability is


mailto:acui@trican.ca
http://www.searchanddiscovery.com/abstracts/html/2014/90189ace/abstracts/1842488.html
http://www.searchanddiscovery.com/abstracts/html/2014/90189ace/abstracts/1842488.html
http://www.searchanddiscovery.com/abstracts/html/2014/90189ace/abstracts/1842488.html
http://www.searchanddiscovery.com/abstracts/html/2014/90189ace/abstracts/1842488.html
http://www.searchanddiscovery.com/abstracts/html/2014/90189ace/abstracts/1842488.html

measured under conditions that closely simulate the in-situ stress path of a producing reservoir and can be simply represented as
a function of reservoir pressure and therefore be readily usable for various engineering calculations and reservoir simulations.
Discussions on various aspects of the permeability measurements of unconventional reservoirs are presented and applications of
the measured permeability are illustrated.
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Fracture vs. matrix permeability

* For shale gas and olil reservoirs, if there are NO
fractures, there will be NO economical
hydrocarbon productions.

» Permeability of intact matrix rocKk is

also Important, and critical for optimal well
stimulations.

= Matrix permeability should be properly
determined in lab (and in field).
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Woodford Shale
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Fracture vs. matrix permeability
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_Montne Shale at Williston Lake

Complex
fractures!
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A 300m-long cemented &

perforated horizontal well. A 1md-m

¢ = 0.06, S, =0.15, T= 115°C,
P.=25 MPa

Formation permeability varies
from 1e3md to le“md.

Fracture network consists of 1000Mays

= 3 primary hydraulic fractures

(half length, X; = 150m, C; =

10md-m, 120m spacing) 400m
= Orthogonal secondary

fractures networks with C; =
1md-m 42.5m

533m l

CTRICANI./;.




Controls of K, on drainage pattern

o 100 200 300 400 o 100 200 300 400 o 100 200 300 400
Pressure (kPa) 2011-03-21.1589658 kP 8
a
kPa Pa
25,000 25,000 25,000
23,263 22,968 22,765
21,527 20,937 20,530
—— 19,790 —— 18,905 18,295
K _ —{ 18,053 — 16,873 16,060

m 14,842 13,825
0.0001 md | |* '

14,580 12,810 11,591

110,778

—— 12,843 9.356
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11,106

6,715

9,370

4,684
7,633

kP kPa : kPa
a Pressure (kPa) 2011-03-21.1589658 Pressure (kPa) 2011-06-15 K layer:
25,000 25,000 25,000
23,581 23,223 22,858
22,162 21,446 20,716
— 20,744 19,669 18,574
— 19,325 17,893 16.432
K —_ 17,906 16,116 14290
m
16,487 14,339 12,148
0.001 md \
— 15,068 12,562 . — 10,006
13,650 10,785 7.864
12,231 9,008 5722
10,812 7,231

3,580

(TR[CANIY%‘



160

140

120

100

80

60

40

Daily Production Rate (10% m3/d)

20

CTRICANI./;.

80
Cumulative productic 20
) k=1e-3md
//
— 60
)
50
k=1le-4md
/ — 40
 / ——
\ / 30
W) / /
\ / 20
\
M Daily production
Sa s k=le-3md | k=1e-4md 10
- *-'. == m=e- - en = 0
0 1000 2000 3000 4000 5000 6000
Time (day)

Cummulative Production (106 m3)

22,698

20,396

18,094

15,792

13,490

11,189

8,887

6,585

18,137

15,850

13,562

11,274

8,987

6,699

4,412

2,124

10 Years

Pressure (kPa) 2021-03-30 K layer: 1
kPa
25,000 ‘




Techniques for permeability measurement

» GRI or pressure-decay or pressure-fall-off technique
= Crushed samples or core plugs
= Confined or unconfined but commonly unconfined
= Low gas pressure
= Approximate

= Pressure-Pulse decay (PPD) technique

= Core plugs

= Confined to in-situ stress with high or low fluid pressure (Pf)
= Steady-state technique

= Air/N2 permeability
= Commonly under low confining stress and low Pf

= Other techniques
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» Gas fills up pore space from all directions with
cross-bedding transfer

(Cui et al., 2009)

Gas Flow Pattern
— Cross-bedding
—— Along-bedding
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Presenter’s Notes: Different methods measure different permeability. Permeability is direction dependent.




* Average permeability value in all directions
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Presenter’s Notes: Different methods measure different permeability. Permeability is direction dependent.




GRI permeability — continued 2

« Average permeability for different pore-throat sizes
* Not good for highly heterogeneous samples
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Presenter’s Notes: Different methods measure different permeability. Permeability is direction dependent.



= Strong dependence of sample size
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Presenter’s Notes: Different methods measure different permeability. Permeability is direction dependent.



* No consideration of effective in-situ stress
» Low gas pressure — diffusion dominated

= Not good for production analysis
Valid reservoir quality index (porosity & pore size)
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Helium Porosity (%)

Presenter’s Notes: Different methods measure different permeability. Permeability is direction dependent.



* Gas transfers from left to right mainly through fracture/high
permeability lamina

(Cui et al., 2009)

Gas Flow Pattern
— Cross-bedding
— Along-bedding
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* Horizontal or vertical permeability can be
measured separately on core plugs with

different orientations

Hydraulic Fracture
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= No ambiguity for permeability interpretation
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 Pf: diffusion or Klinkenberg effects
* Pc: confining stress effects
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(Cui et al, 2013, SPE167047)
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1E-2

8000 » For practical purpose,
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_ = in laboratory should
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Conclusions

= GRI permeability is an approximation and should
not be used for engineering analyses of
production. But it is a good index for reservoir
quality evaluation.

= Directional permeability including diffusion and
viscous flow, and effects of effective stress should
be determined using the PPD or other similar
techniques.

" Permeability along the stress-path of a producing
reservoir can be determined in laboratory without
separating viscous flow and diffusion.
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