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Abstract 

 

Advances in the Digital Oilfield Concept in the last decade have not only increased the amount of data captured but have also improved the 

quality and precision. Furthermore, initiation of the robust application of relatively-new technologies in petroleum engineering including 

computer science lets us turn data into knowledge in a more efficient and consistent way. This paradigm change has great potential for use yet 

is not being applied in many areas that use more ‘traditional’ or ‘primitive’ ways. The application of case-based reasoning techniques in 

reservoir analogues is one of such areas where these relatively new techniques are not studied and documented in a proper and efficient manner. 

 

Temizel and Dursun (2013) listed different metrics and methods of k-means clustering algorithms that can be harnessed within the scope of 

effectively finding reservoir analogues. A second aspect of this approach involves the validation of the reservoir analogues using generalized 

dimensionless forms of reservoir performance and development parameters systematically. This is a crucial step in finding and employing 

analogue techniques that can be used to make decisions about large investments in new discoveries as well as field development plans. 

Although analogues have been used in day-to-day activities in the industry, the industry still lacks a systematic way of validating matches. This 

will be critical for developing automated data-mining-based digital oilfields. In our study, we extend the first step of matching reservoir 

analogues with cased-based reasoning algorithms to the key parameters and their use in validating matched analogues in a dimensionless, 

scalable domain. This study outlines the significant parameters in reservoir analogue matching and will serve as a guide for engineers in the 

industry in decision-making processes in field development by shedding light on most of the uncertainties that naturally exist in critical aspects 

of development and design, and most importantly economics. 

 

Introduction 

 

The many uncertainties regarding the potential performance of a field particularly in complex and harsh environments, such as deep-water, 

limit the number of wells being drilled due to high drilling costs. Growing exploration in deeply buried reservoirs and in reservoirs with 



increased complexity that have relatively scarce information available has necessitated the use of reservoir analogues techniques. A good 

geological description of the reservoir’s complexity is basic for working towards optimum field development. However, the 

limitations/constraints associated with describing a complex reservoir could be overcome by using reservoir analogues. Using analogues 

provides a better understanding and a more effective way of dealing with reservoir problems. It can help in recognizing potential problems 

early in the development phase and so that mitigation strategies can be planned. In addition, it contributes to the E&P best practices of overall 

knowledge capture, retention and reuse. 

 

Unfortunately, there is an inherent problem with using reservoir analogues—a perfect analogue cannot be produced and the use of an incorrect 

analogue can result in erroneous decisions. It is therefore important to analyze the usability of an analogue based on reasoned and critical 

assessment of the problems and principal objectives involved. Case-based reasoning (CBR) is the process of finding solutions to new problems 

using the solutions of previously solved problems. Cases describe specific situations and are indexed by relevant features. All cases contain 

data about: 

 

 Identification such as owner, place, date and time, geology, well depth etc. 

 Specific issues and failures 

 Recommended procedures to solve the problem 

 Success ratio of solved cases and lessons learned 

 

The methodology of CBR is based on the past decisions made about the same type of problems with the assumptions that similar problems 

have similar solutions (Avramenko 2006). CBR is typically described as a cyclic process, comprising the following four stages (Temizel and 

Dursun 2013): 

 

1. RETRIEVE the most similar case(s). 

2. REUSE the case(s) to attempt to solve the problem. 

3. REVISE the proposed solution if necessary. 

4. RETAIN the new solution as part of a new case. 

 

Abel et al. (1996) used CBR in a system to support petrographic analysis. Irrgang et al. (1999) used CBR to cut drilling costs by deriving 

alternative plans using information from previously drilled wells. Skalle et al., (1998, 2000) applied CBR to develop best practices on tackling 

stuck drill string issues and for improving the efficiency of oil well drilling. Popa et al. (2008) demonstrated how CBR could be applied for 

well failure diagnostics and planning. Abdollahi et al. (2008) used a case-based approach for diagnosis of well integrity problems. Shokouhi et 

al., (2009) used CBR for determining root causes of drilling problems by using knowledge from previous cases. Shokouhi et al. (2010) also 

reviewed application of CBR in different fields of petroleum engineering. In drilling operations for example, CBR could be applied for 

planning, problem solving, optimization, decision-making, well integrity, and pattern recognition. This could help to reduce costs up to 30% 

and address knowledge problems due to limited access to human experts and the age gap problem. 

 



Table 1 shows the list of parameters defined by SPE and SEC to find the reservoir analogue. The highlighted parameters are used as the 

reservoir parameters in our simulations. 

 

Using Distance Metrics to Find Similarities between Analogues and the Reference Model 

 

Table 2 shows the distance metrics used for the numerical attributes. 

 

Explanation 

 

We are using certain distance metrics between the reference model and five models/analogues based on seven attributes. These features are 

Average Porosity, Average Permeability, Average Thickness, Average NTG, Average Viscosity, Average API gravity, and Average Initial 

Pressure. Note that the primary objective here is to illustrate the method, the detailed examination or use/selection of parameters is of 

secondary importance. 

 

In our formulation below, distance metrics will be shown as dn, with n denoting the sample model number (n = 1, 2...5). In addition, data points 

in model vectors will be written as xn
m
, with subscript n being the model number as before and superscript m indicating the attribute number (m 

= 1, 2 … 7). Thus, using all seven attributes, four distance metrics will be calculated based on different distance metric definitions. These 

values are shown in Table 3 following the equations used. Table 4 shows the values of attributes for the analogue models. 

 

Cityblock Distance 

 

In this metric, we calculate distances in the analogue by moving through blocks; no diagonal move is allowed. Thus, we just calculate the 

absolute value of the distances between the reference and the sample vectors for different features directly as: 

 

 
 

By using this formula for every sample model, five of the distance metrics can be found. Note that the cityblock metric is a basic measure of 

how far apart two quantities are. Therefore, it is a simple and useful tool in analyzing any kind of relationship between two sets of data. 

 

Euclidean Distance 

 

This metric tells us the shortest distance between two vectors using the well-known Pythagorean formula. For m-dimensions it is defined as: 

 

 
 



Euclidean distance is the main measurement used to compare two quantities. It calculates the root mean square of the distance. Its importance 

comes from the fact that the shortest geometrical path between two points is given based on it. 

 

Chebyshev Distance 

 

In mathematics, Chebyshev distance is a metric that gives the maximum of the difference of two vectors by comparing their entries one by one. 

 

 
 

This metric is important because rather than giving the cumulative similarity of data, extreme points are taken into account and compared. 

Therefore, even if all points are close except for one extreme point, the Chebyshev distance becomes that point’s distance emphasizing 

efficiency in grouping. Thus, it is useful especially in clustering. Therefore, the three metrics given above are sub-classes of the Minkowski 

metric. An additional metric used is cosine distance. 

 

Cosine Distance 

 

The cosine distance metric is a measure of similarity between two vectors defined in an inner product space. It basically gives the ‘1-cosine’ 

between these two vectors. When similarity increases, vectors tend to be aligned making the angle smaller, giving rise to higher values of 

cosine. Thus ‘1-cosine’ is to decrease, yielding smaller distance metrics for closely related vectors, just like before. Cosine similarity is 

generally used in the positive domain. 

 

 
 

In the expression above, the numerator calculates the inner product while the denominator is finding the absolute values of the vectors under 

consideration. Cosine values are supposed to be limited to the range of 0 to 1. Table 3 and Table 4 show the values of attributes for reference 

model 1 and the analogue models, respectively. 

 

Analogue-Matching Results Using Distance Metrics 

 

Based on these distance metrics and related formulae, the results are ranked and shown in Table 5 and Figure 1. The distance values for our 

five trial models are d2, d3,...d6. Apparently, based on the results of different type of metrics, all trends look similar so that model 2 fits the best 

and model 6 fits the worst. Note that in the calculations, normalized values with respect to reference data are used instead of the pure data given 

in Table 2, to prevent biasing due to differences among the magnitudes of the different physical quantities. 

 



Reservoir Simulation 

 

Due to difficulties associated with obtaining and publishing confidential data while keeping in mind the scope of this study, a standard SPE 

simulation model was used. As mentioned, concept is of primary concern here rather than the values or results obtained throughout the 

calculation, matching of the models, and the validation of the matched-analogues. The model used for simulation was the SPE Comparative 

Solution Project 9 model. It is a dipping black-oil reservoir model with 25 oil producers and 1 injector. Reservoir lifetime of this synthetic case 

is 01/01/1980 – 06/19/1982. The reservoir simulator used for this study was the Nexus® simulator. Values for porosity, permeability, viscosity, 

average thickness, net-to-gross ratio, API gravity, and initial pressure were taken from the reference and analogue model values listed in Table 

1 and Table 2. 

 

Table 6 shows the simulation output for Oil in Place, Cumulative Oil Production, Cumulative Gas Production, and Cumulative Water 

Production for reference model 1 and five sample models. In addition to Table 6, Figure 2, Figure 3, and Figure 4 show the plots of the 

simulation output for Cumulative Oil, Cumulative Gas and Cumulative Water Production for the reference model and five sample analogue 

models. 

 

Reservoir production performance and recovery is of utmost importance among the objectives of finding the ‘right’ analogues. As performance 

is a key unknown in the beginning while being the ultimate crucial parameter, we must validate the consistency and strength of the methods 

and algorithms used for matching analogues. Some performance parameters include cumulative oil production, cumulative water production, 

cumulative gas production and recovery. Other parameters are used in calculating the distance between the reference and the analogue models. 

Each parameter/attribute was normalized with respect to the respective parameter of the reference model to eliminate the effect of the 

difference in order of magnitudes between attributes in terms of numerical values. Engineering judgment should still be used to check and fine-

tune the decisions and the way the methods are used. The operational strategy for the fields might differ and affect parameters such as the 

cumulative production of fluids. Thus, there is no generic solution, it is case-specific and adjustments by reservoir engineers should be one of 

the required inputs of this process. Results of different simulation models are outlined in Table 7. 

 

Results and Discussion 

 

With the advance in technology and so-called ‘smart fields’ concept in the oil industry, it is crucial not only to set standards for each and every 

process but also to establish algorithms that will enable the automation of processes in state-of-the-art workflows to process large amounts of 

data where workflows turn data into knowledge. Similarity between the reference model and the analogue models has been illustrated using 

different numerical distance metrics in MATLAB. The similarity to the reference model was first calculated using the model attributes and then 

the performance attributes were used to obtain the distances or the similarity indices between the reference and the analogue models. The main 

objective was to compare the similarity indices obtained using model features and performance measures that are of utmost importance to the 

operators. The main objective here is to provide a means of comparison between the aforementioned parameters in calculating the distance 

measures and thus to understand the validity of the initial analogue matches done with model features and the distance metrics (Table 8). 

 



As seen in Figure 5, cityblock distance experienced more difference between the values calculated using the model and the performance values. 

Differences between values of cosine distances are the lowest. This might be due to this metric's smoothening/dampening effect. Overall, 

although not perfect, parallel trends between the model and the performance values are important in terms of the proportionality and trend of 

these two approaches while putting more trust on the initial model values' validity in using them in matching the analogues. This study can be 

extended in a more detailed manner. Methods and concepts illustrated are far more important than the numerical values used here. 
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MATLAB CODE 

% GEO PAPER ATTRIBUTES (BASED ON MATLAB PAGE) 

 

% Reference values 

M1=[0.33 2000 100 0.8 100000 9 3500]; 

 

% Model values 

M2=[0.30 1000 60 0.7 10000 13 4200]; 

M3=[0.24 350 55 0.8 400 22 5000]; 

M4=[0.20 100 40 0.7 100 26 5350]; 

M5=[0.25 10 30 0.6 50 32 6200]; 

M6=[0.15 0.1 25 0.6 100 36 5600]; 

 

MATLAB CODE used 

 

% Model Matrix 

M0 =[0.33 2000 100 0.8 100000 9 3500 

  0.30 1000 60 0.7 10000 13 4200 

  0.24 350 55 0.8 400 22 5000 

  0.20 100 40 0.7 100 26 5350 

  0.25 10 30 0.6 50 32 6200 

  0.15 0.1 25 0.6 100 36 5600]; 

 

% Normalized model matrix 

M=zeros(6,7); 

M(1,:)=M1./M1; 



M(2,:)=M2./M1; 

M(3,:)=M3./M1; 

M(4,:)=M4./M1; 

M(5,:)=M5./M1; 

M(6,:)=M6./M1; 

 

% Function: Use M for normalized, M0 for unnormalized form 

% Models: 'euclidean', 'seuclidean', 'cityblock', 'minkowski', 

% 'chebychev', 'mahalanobis', 'cosine', 'correlation', 

% 'spearman', 'hamming', 'jaccard' 

 

X=zeros(2,7); 

X(1,:)=M(1,:); 

 for i=1:1:5 

  for j=1:1:7 

   X(2,j)=M(i+1,j); 

  end 

 pdist(X, 'chebychev') 

end 
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Figure 1. Distance vs. analogue models using different distance metrics. 

  



 
 

Figure 2. Cumulative oil production. 

  



 
 

Figure 3. Cumulative gas production. 

  



 
 

Figure 4. Cumulative water production. 

  



 
 

Figure 5. Comparison of results of distances evaluated using model and performance values. 

  



 
 

Table 1. List of reservoir parameters defined by SPE and SEC (Hodgin et al. 2006). 

  

Reservoir Matching Parameters 

Proximity Engineering Properties 

'Lateral Distance Betw een Subject and Analog Average Depth (Ft) 

Rock Properties Original Bottom Hole Pressure (psia) 

"Poros ity (%) Orig inal Bottom Hole Temperature (Deg F) 

"Permeability (lTd) 'Availability of MDT Data (Number of Data Points) 

Permeability Distribution (Dykstra Parsons or Kv/Kh Ratio) 'Fluid Samples Obtained from MDT Data (Yes/No) 

Gross Thickness (Ft) Average Initial Well Producing Rate (BBLIDay or MCF/Day) 

"Net Pay Thickness (Ft) Average Drainage Area/Well (Acres) 

Net-ta-Gross Ratio Average Well Spacing (AcreslWell) 

"Hydrocarbon Saturation (1 -Sw %) Drive Mechanism 

'Type/Quantity of Core Data Production Mechanism (Development Scheme) 

'Type of Open-Hole Evaluation Logs Available Primary Product (Oil/Gas) 

Geological Properties Originalln-Aace Volume (Primary Product Oil/Gas) 

Predoninate L~hology Cumulative Production of Primary Product/Date 

"Geological Age Recovery Factor To Date (%) 

Depositional Environment Estimated Primary Ultimate Recovery Factor (%) 

'Same correlative stratigraphic interval or reservoir (Yes or No) Method Deternining Primary Recovery Factor (Performance/Simulation) 

'Continuity (Comment on compartmentalization) Total Recovery Factor Including Secondary Recovery (%) 

Reservoir Area (Ac) Ratio Producers to Injectors 

Type of Original Fluid Contacts (LKH, OIW, G/W, GOG) Flood Pattern Ty pe 

Productive Column Height (Ft) Fluid Properties 

'Availability of Seisnic Data (2-0/3-0) Oil Gravity (Deg AA) 

Initial Solution GOR (CF/BBL) 

Oil Viscosity (cp) 

IVIobility Ratio 

Gas Gravity 

Initial Condensate Yield (BBLlMMCF) 

Inert Gases (1VIo1 % Each) 



 
 

Table 2. Distance metrics for numerical attributes. 

  



 
 

Table 3. Values of attributes for reference model 1. 

  



 
 

Table 4. Values of attributes for analogue models. 

  



 
 

Table 5. Distance metric values between the reference model and the sample models. 

  



 
 

Table 6. Simulation output. 

 

 

 
 

Table 7. Results based on performance parameters. 



 

 
 

Table 8. Distances with respect to model and performance values. 

 

 

 


