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Abstract

This research investigates the relationship between acoustic properties and petrophysical properties within one outcropping grainstone cycle in
the Permian San Andres Formation at Lawyer Canyon, Wets Texas.

The commonly accepted assumption for moldic carbonate rock is that rocks with rounded pores have a stiffer matrix and a higher Vp than rock
with a high aspect ratio for a given porosity. One recent study has shown that the nature of the crystalline matrix between spherical pores is
actually the main control on acoustic properties.

Acoustic properties were measured directly on the outcrop and on mini-core plug collected along a 900 meter transect within a single
grainstone body that shows lateral changes from interparticle porosity dominated to oomoldic porosity dominated. The studied grainstones are
dominated by small (150-um) peloids, ooids, fusulinids, and mollusk fragments. Porosity varies from 11 to 29%, and permeability ranges from
0 to 60 md. Vp and Vs show variation up to 1,500 m/s for a given porosity. The distinction in the velocity-porosity cross-plot between
grainstone with interparticle porosity and moldic grainstone is not clear. If we plot acoustic properties against distance along the outcrop face, a
separation in acoustic properties between the zone with moldic pores and the interparticle-porosity-dominated zone cannot be seen.
Petrographic analysis under plain light microscope shows no apparent difference between fast and slow samples for a given porosity. However,
under UV light, samples with a lower-than-average velocity for a given porosity have a matrix between pores with significant amounts of
intercrystalline microporosity. Conversely, rocks with a higher-than-average velocity for a given porosity all show a lack of microporosity in
the matrix connecting the pores. The amount of intercrystalline microporosity in the matrix seems to be the primary control on stiffness of the
rock framework and not the pore type, as previously assumed.

This study has direct implications for interpreting sonic log and calibrating seismic inversion techniques in reservoirs that have oomoldic pores.
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Objective

Our overall research project proposes to investigate
vertical and lateral seismic velocity heterogeneity in
carbonate reservoir rocks to optimize the use of seismic
Inversion techniques for carbonate reservoir
characterization

To better constrain the potential relationship between
seismic velocity and other petrophysical characteristics, we
Investigate sonic velocity within well-constrained
geological framework, in this case a single grainstone body.



Problem : Untested Assumption

In our past seismic modeling experiments to
Investigate the potential of AVO technique
(Janson et al, AAPG 2007) to detect moldic pore,
we used the assumption that Vp/Vs ratio In
moldic pore is high.

This assumption was supported by :

« many studies that have shown that Vp is high
In moldic pore because of the stiff frame.

* This effect is not believed to affect Vs.
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Recent results from Baechle et al. 2008
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Problem : Untested Assumption

The question is:

does our dataset, which consist mostly of
moldic dolograinstone with fairly
homogeneous crystal size behave
similarly than the oomoldic limestone rock
of Baechle et al. 20087

An If so, can we explain and predict the
scattering of velocity ?
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Velocity Histograms
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Velocity Porosity Cross-plot
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Velocity Porosity Cross-plot
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There is no clear Vp/Vs ratio increase in the moldic
grainstones. Just more scatter!




Velocity Porosity Cross-plot

@ Vp_interparticle
B vp_highly modlic
Vp_moldic

Slower-than-average
\ 2
i8 2I0 2I2 2!4 i6 28 30

10 12 14 16

porosity in %

Behave the same as Baechle (2008) data
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Velocity Porosity Cross-plot
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There is a 1200 m/s difference between these 2 grainstones!
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UV light image
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Plain light image
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Porosity Distribution (point-counting)
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MICP data

Normalized data V.S. pore Size Distribution
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Results

« Velocity in the cycle 7 grainstone varies up to 1500 m/s
for a given porosity.

« Velocity scatter is more important in the moldic and
highly moldic grainstones than in the interparticle
porosity-dominated grainstones.

* Velocity versus porosity plot don’t show any trend.
Moldic and highly moldic grainstones can be slower or
faster than average.

« There is no Vp/Vs ratio increase between interparticle-
porosity-dominated grainstone and moldic grainstone.



Results =& . 2

 Photomicrograph of fast or slow grainstone for a give“
porosity don’t show striking petrographic difference
under plain light.

« Under UV light and SEM, the amount of microporosity
In between the dolomite crystals in the matrix between
macropores correlate well with the acoustic behavior
of these grainstones.

« Highly microporous matrix leads to weak framework
and slow velocity. Conversely low amount of
microporosity in the matrix yield a stiff framework and
fast velocity.

- These results completely invalidate the assumptions
used in previous years for AVO modeling.





