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Abstract 

 

Two critical conceptual sequence stratigraphic models for exploration and production were analyzed with sedimentary computer simulations of the 

Jurassic and Cretaceous sedimentary fill of the Intrashelf Basins (ISB) of the Eastern margin the Arabian Plate. One tracked the Hanifa Basin fill from 

Jurassic argillaceous carbonates to evaporites to the Cretaceous carbonates and the other the Aptian/Albian fill of the Bab ISB during a glacially induced 

sea level low. The Hanifa ISB simulation demonstrated Lower to Middle Jurassic sediments onlapped the uplifted eastern plate margin of the UAE and 

Oman as carbonates prograded and filled westward. Uplift ended Middle Jurassic accumulation with subaerial and progressive erosion of the Tuwaiq and 

Dhruma Formations on the eastern plate margin. Margin collapse caused a drowning unconformity. Westward of the platform margin the intra-shelf basin 

a base-level fall accompanied Arab and Hith evaporites accumulation. In the Early Cretaceous, the platform extended to North Oman with deposition of 

argillaceous hemipelagic carbonates of the Habshan. The lack of evaporites supports a climatic change from the Jurassic arid climate to a Cretaceous 

humid one. The simulation of the Mid Cretaceous carbonates supports division into Early Aptian and Late Aptian carbonate platform second order 

supersequences that aggraded and prograded to fill the Bab ISB. An unconformity initiates the sequence with westward prograding lowstand clinoforms 

onlapping eastward onto the Lower to early Upper Aptian carbonate platform of the SW margin of the Bab ISB. The simulation captures an initial sharp 

sea-level drop of 35–40 m from the early Upper Aptian shelf break to the topset of the first lowstand clinoform, and the sea-level drop by another 10 m 

during the progradation of following eight clinoforms. Each progradational pulse of the clinoforms is modeled over 405 k.y. Simulation illustrates the 

initial sharp sea-level drop of some 40 m followed by continued slow sea-level fall producing lowstand clinoforms prograding towards the ISB. Sedpak, 

developed at the University of South Carolina assumes clastic transport based on slopes and carbonate production based on water depth. Output 

geometries display a sequence stratigraphic framework of erosional and depositional surfaces of the simulated section enabling the extension of 

interpretation of depositional setting and predictions of lithofacies geometries away from well data. 
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The stratigraphic framework of the Arabian Plate (AP) margin is subdivided by eleven major unconformity surfaces bounding tectono-
stratigraphic mega-sequences (AP 1-11 of Sharland et al 2001). These were created during low-frequency tectonic events associated with 
cycles of tectonic plate motion (Wilson, 1966). It is further subdivided sixty-three higher frequency events related to eustatic changes in 
sea level and varying rates of sediment accumulation (Sharland et al, 2001).  These events are tied to periods maximum flooding (MFS) 
associated with maximum regional transgressions, non-deposition, and/or unconformities, and sediment accumulation.  Together these 
tectonically and eustatically produced surfaces provide chronostratigraphic order to the sedimentary fill tied to radiometric and biologic 
markers (Sharland et al, 2001).    

Following a low ISB development begins with a rapid sea level rise, exceeding carbonate production across platform interior, followed
by aggradation on margin with a starved basin center. ISB margin then progrades and infills the basin, commonly less than 100 m deep.

As indiacted in the chronostratigraphic chart to upper right Jurassic
Arabian Plate ISBs include the Marrat, Hanifa, Najmah, and Gotnia
basins often filled by shallow marine arid-climate limestones and
dolomites with common evaporites and interbedded minor transitional
marine shales and basin margin grain carbonates. Cretaceous ISBs
include: Garau of Iraq, Kazhdumi of Iran and Bab of the UAE, and the
Mishrif and Najaf ISBs of the UAE and Iraq, respectively. Fill is
dominantly humotropic carbonates with dolomites and shales.

Chronostratigraphic Chart for Arabian Plate ISBs AP 7 - TETHYIAN SPREADING - JURASSIC
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Plate Tectonic Evolution of Arabian Gulf
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Middle East Source Rocks, Reservoir and Seals ( After Kendall and Alsharhan 2013)

Middle Eastern Oil and Gas Fields.
Note Oil field reservoirs become
younger from West to East.
Map modified after Al Husseini (1997).

After Edgell, 1992

Geological Cross Section of the Arabian Gulf Basin of sedimentary section overlying the Halokinetic
Proterozoic Hormuz Series.  The younger Paleozoic to Mesozoic to Teriary sediments sequester
oil and gas fields whose reservoirs become younger from west to east.
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Critical conceptual sequence stratigraphic models for exploration and
production can be analyzed with sedimentary computer simulations of
sedimentary fill of the intrashelf basins of the Eastern margin of the Arabian
Plate.  Examples from the Jurassic and Cretaceous sedimentary fill of the
Eastern margin were simulated:

1) Evolution of the Toarcian fill of the Marrat Basin from Lower Jurassic
evaporites through a prograding carbonate margin with basinal argillaceous 
carbonate capped by evaporites 

2) Evolution of the Middle to Upper Jurassic fill of the Hanifa Basin from 
argillaceous carbonates to evaporites capped by Cretaceous carbonates, 
and:

3) Aptian/Albian fill of the Bab Basin during a glacially induced sea
level low. 

Results for the Marrat and Hanifa Basins simulations demonstrate the Lower
to Middle Jurassic onlapping the uplifted Arabian plate margin in Kuwait,
Saudi Arabia, the UAE and Oman as two phases of carbonate margin
progradation and basinward infilling. The Middle Jurassic ended with uplift
and subaerial exposure and progressive erosion of the Tuwaiq and Dhruma
Formations along the plate margin. The margin then collapsed with a
drowning unconformity. Away from the platform margin of the intra-shelf 
basin a base-level fall accompanied Arab and Hith evaporites accumulation.

In Early Cretaceous times the platform of the Arabian Sheild extended to
North Oman with deposition of argillaceous hemipelagic carbonates of the
Habshan. The lack of evaporites supports a climatic change from the arid 
climate of the Jurassic to a humid climate of the Cretaceous. 

The simulation of Mid Cretaceous carbonates supports their division into
the second order supersequences of Early Aptian and Late Aptian
carbonate platforms aggrading and prograding while filling the Bab
intrashelf basin.  An unconformity initiates the sequence with westward
prograding lowstand clinoforms also onlapping onto the south-western
margin of the Bab intrashelf basin and its Lower to early Upper Aptian
carbonate platform. The simulation captures the initial sharp sea-level drop
of 35–40 m from the early Upper Aptian shelf break to the topset of the first
lowstand clinoform, and the sea-level drop by another 10 m during the
progradation of following eight clinoforms. Each pulse of progradation of
the clinoforms is modeled over 405 k.y. Cross-sections illustrate the initial
sharp sea-level drop of some 40 m followed by continued slow sea-level
fall producing lowstand clinoforms prograding towards the basin.

The Sedpak sedimentary simulation, developed at the University of South
Carolina, recreated the sedimentary fill of the Marrat and Hanifa Basins, and 
the Bab Basin.  It assumed carbonate production based on water depth and
clastic transport based on slopes. Output geometries display a sequence
stratigraphic framework of erosional and depositional surfaces of the
simulated section enabling the extension of interpretation of depositional
setting and predictions of lithofacies geometries away from well data. This
aids prediction of facies likely to contain both hydrocarbon and water
resources and their characteristic fabrics.

The advantage of these simulations is that it provides a template to the
complexities of sediment stratigraphy; enabling identification, testing, and
modeling of sedimentary systems and the sharing of data with others;
enhancing the understanding of biostratigraphy and providing age
constraints for stratal geometries and sequence stratigraphic 
interpretations. They reduce time for understanding interpretations of
seismic and well data by identifying and constraining key factors that
control sequence stratigraphic geometries and  architectures, including
rates of sedimentation, eustatic sea level, and tectonics. 

While Gondwanaland evolved through extension, compression, and basin restriction
this also had impact on source rocks. Concurrently climate of the Arabian plate was 
affected by latitude rain shadow and as illustrated above green house and ice house
climatic events and effects of transgressions and super-plumes that helped nutrients
to flourish.  The diagram tracks the resultent significant source rocks through time on
the Arabian plate and this explains why the intrashelf basins or ISBs were so rich in
organic material sequestered during rapid marine transgressions.

Organic Matter and Plate Tectonic
Evolution of Arabian Gulf

The region outlined by the red oval traces the evolution of the Southern Tethys basin seaway
that has existed since the Precambrian   This body of water flanked what is now the Arabian
Plate and includes the proto Tethys, paleoTethys, and neoTethys Oceans. The evolving
geographic location of this ocean and the geology that underlies it is responsible for the
accumulation of thick stratigraphic packages.  These extend across the Arabian Plate through
the Zagros and Taurus Mountains, Levant-Cyprus and North Africa.  Sediments accumulated
both in the Tethyan basin and on the adjacent Precambrian metamorphic and igneous
basement rock of Pangea, Gondwanaland, and Southern Eurasia. The shared geologic history
of the Southern Tethys region means similar tectonic and depositional settings and a
stratigraphy that can be correlated across the region from the Precambrian through Cenozoic. 
These stratigraphic packages contain many source, seal, and reservoir rocks that make up
both the proven and underexplored petroleum systems of the region. 

Plate Tectonic Evolution of Southern Tethys

In the diagrams above and the maps of the evolving continents below the red oval traces 
that region that was an organic sweet spot through Geologic History. There appear to be 
strong ties between plate setting and climate that can be used to understand the occurence
of organic matter and evaporites and rain shadow and their proximity to the continental
margins and narrow marine bodies match those of seen the break up and then collisions
associated with the history of Gondawanaland. Arid climates and organic matter in the
marine settings in the zones associated with rain shadow appear common to the Middle
 East and the southern margin of the Tethys Ocean.

Marrat, Hanifa, and Bab Intrashelf Basins 

The Mesozoic sedimentary sections overlying the Arabian Plate are a mix of carbonate, evaporites organic rich carbonates that collected behind barriers formed by the movement of what was an original Hercynian horst and block terrain
adjacent to the southern shore of the Tethys Ocean. These barriers accumulated sediment over them and limited access to the sea. This lead to the punctuation of the geological record with evaporites, carbonates and source rocks
associated with an adjacent arid climates. These bodies of the seawater occurred as isolated linear belts of interior drainage with restricted entrance to the open Tethys Ocean. Regional drainage probably tended to  flow into this basin,
and the air system was that of the arid tropics. There was a wide envelope formed by the surroundin  subcontinents of Arabia and Africa.
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This phase diagram ties carbonate production to the controls that Gondwanaland's
tectonic evolution through extension, compression, and basin restriction and the
arid tropical climate of the Arabian plate. It shows how biologic factors, water movement 
and pre-existing topography were controls too within the intrashelf basins (ISBs) 
affected carbonate production and accumulation.
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Hierarchal Arrangement of Carbonate Geometries & Sequence Surfaces

In diagrams to upper left and upper right
carbonate geometries change their 
character in response to changes in
accomodation and tend to quickly fill
any space generated by changes in
base level (either a response to
changes in eustasy or in tectonic
subsidence).  Sedimentary simulations
varying accomodation and rates of 
sediment accumualtion form carbonate
stacking patterns and prograding
geometries that keep up, catch up and 
give up with respect to sea level position.      
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SEDPAK Time Step OperationsIntroduction to SEDPAK

Basin Setting. The basin is divided into equally-spaced columns.  
After the bayline is located, alluvial sediment is eroded landward 
then submarine sediment is deposited or eroded.  Offshore blocks 
created by sea level change or tectonic adjustments may be 
eroded to the initial basin surface.

The computer simulation sedimentary SEDPAK was developed at the 
University of South Carolina as a simulation tool that models the 
geometry of the generalized lithofacies of a basin, resulting from the
interaction between the major geological processes including:
 
                               Eustatic Sea Level
                               Tectonic Movement
                               Sediment Accumulation

SEDPAK constructs empirical models of sedimentary geometry. These
sedimentary geometries are created by the infilling of a two
dimensional basin from both sides with a combination of in situ 
carbonate growth and clastic sediment in the 15 steps outlined  to 
the right.

Intuitive model input parameters are based on physical processes, 
including clastic transport based on depositional distance, quantity 
and slopes and carbonate production based on water depth.  Data
entry is accomplished by using a graphical user interface. Values
are entered for the initial basin configuration and, as a function of
time, the following variables may be specified: local tectonic behavior,
sea level behavior, amount and direction of clastic deposition, 
accumulation rates of carbonates both as a function of water depth
and pelagic accumulation. The model traces the evolving geometries
of clastic and carbonate sediments through time, responding to the
depositional processes previously itemized. Sediment geometries are
plotted as they are computed, so the results are viewed immediately. 
Based upon these observations, parameters can be changed
interactively and the program rerun until the resultant geometries
are satisfactory.

Rates of both carbonate and clastic sediment accumulation and
transport distance down slope are modeled in two dimensional
simulation space, and offer valuable insight into a more quantitative
modeling approach. Further information on the fabrics of the
deposits can be obtained by means of coupling computer models of 
sedimentary geometries with physically based submodels that
describe the spatial and temporal evolution of relatively small
portions of the entire system.

Output geometries display a sequence stratigraphic framework of
erosional and depositional surfaces of the simulated section. 

The origins of sediment geometries and facies are interpreted by
comparison with observations of similar features in modern
sedimentary systems and their processes andthen the interpretations
are tested with the SEDPAK simulation. The question is: do input
parameters match those inferred from current field observations
parameters set to create basic sequences stratigraphic systems 
tracts, including prograding low-stand and highstand systems tracts,
and retrogradational transgressive systems tracts? The same applies
to in-situ carbonate accumulation. Are the depth-production rates
reasonable? 

Computer modeling of sedimentary geometries that match
interpreted sections is a repetitive exercise in parameter estimation,
viewing of resulting geometries and adjusting of parameters to
converge on a best match. 

SEDPAK extends interpretation of depositional setting and
predictions of lithofacies geometries away from the studied areas.
It aids prediction of facies likely to contain both
hydrocarbon and water resources and their characteristic fabrics.

Schematic representation of Erosion.  Sediment above
the erosional line at columns Cn-2 and Cn-4 is removed.
No sediment is eroded from Cn-1 or Cn-3. Eroded
sediment is returned to the sediment supply for later deposition.

Varying Carbonate Rates.  Rates are interpolated between 
depth-rate curves given at specified times in model parameters

Wave damping of carbonate accumulation. From wave base
in a landward direction to the right, wave damping rates (Wnr)
are subtracted from the carbonate rates (Cnr) where n is the
distance from wave base and r is the rate at that distance

Excess carbonate production is bypassed in the 
lagoon and basin. A proportion of the excess is
transported either into the lagoon or basin as a
percentage. For each proportion, another
percentage can be specified as talus or turbidites
with specified distance of penetration.

Pelagic deposition of Carbonates.  
Pelagic rates in meters/Ka can vary over time
and are linearly interpolated between user 
defined rates at specific times.

Winnowing of shale by waves. Waves touch
bottom at left (n=1). The winnowing curves
specify the percentage of shale to remove
from the sediment column to the right of
wave base.  
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Vertical Fault Displacement. A vertical fault begins at time t .
The vertical arrows show displacement occurring between
two adjacent columns over time.

Within each time step, a fixed sequence of operations creates or modifies the sedimentary
geometries. First, tectonic adjustments change the accommodation at points defined by the
user across the basin. Next, the intersection of the sea level position with the basin surface
defines a bayline location (Posamentier and Vail, 1988) marking the base of the alluvial plain.
Sediment eroded landward from the bayline location is added to the sediment supply.
Seaward of the bayline, sediment erodes or is deposited according to geometrical rules. After
clastic deposition is completed, carbonates accumulate in-situ to form reefs. From the reef
positions, excess carbonate is transported downslope as talus or turbidite, or backslope as
lagoonal sediment. Next, a pelagic drape, specified as a rate, blankets the submarine setting.
Sediment loading and compaction adjustments, followed by winnowing of shales, and
out-of-plane erosion and deposition complete the operations for the time step. These
operations are summarized by the 15 steps are represented above diagramatically.       

STEPS 1 through  6

STEP 11

STEP 5

STEP 7

STEP 7

STEP 7

STEP 3

STEP 8

(c    - w    )
nr nr

2n
w
c

n2

3n
w
c

n3

4n
w
c

n4

c
1 551

w

1n
w c

n1

n=1 n=2 n=3

D

Rates

D
ep

th

Surface
Bottom

Waves Touch

Wave Base
Depth

Carbonate Rates (c   )

Wave Damping Rates  (w   )

Final Carbonate Rates

nr

nr

Bayline

Sealevel

D

1

2



IRAN

QATAR

OMAN

YEMEN

SUDAN

EGYPT

SYRIA

TURKEY

JORDAN
IRAQ

Tropic of Cancer

C.G. St.C. Kendall, & T. De Keyser, 2014

SAUDI
ARABIA

0 KM 250

24

32

36

28

32

36

28

60565248444036

16

20

16

20

48444036 52 56 60

24

N

KUWAIT

SHELF EDGE

PLATE MARGIN

KEY

Sea

Marrat
Basin

LE
BA

NO
N

IS
RA

EL
Up Cret
Thrust 

N. MARRAT
BASIN

?

? ?S. MARRAT
BASIN

UAE

Approximate Location of middle Marrat ISBs

Simulated sedimentary fill of the Marrat basin used the sea level curve proposed
by Haq et al 2012 for the lower Jurassic.  There was sea level high from -182 to
-177 MYBP.  Prior to the eustatic rise contemporaneous platform carbonates 
filled the carbonate platform but post -182 carbonates formed clinoforms whose
trajectory changed from horizontal to vertical while carbonates  accumulated
down slope from sea level to the deepest portions of the basin at around 150
meters. This sedimentary fill was a mix of carbonate and shale. Around
-177 MYBP rates of eustatic sea level rise slowed while carbonate accumulation
filled the basin and prograded out from the basin margin.

Depth to carbonate accumulation rates of Marrat ISB Pelagic carbonate accumulation rates of Marrat ISB
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Hanifa ISB middle to upper Jurassic facies & depositional settings
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Sedimentary fill of Hanifa basin was simulated by modeling the accommodation by varying 
eustasy with the Haq et al 2012 curve for the Middle and Jurassic conjunctly modulated by 
varying tectonic subsidence during accumulation of the Jubaila Formation. Eustasy 
progressively rose from -161 to -144 MYBP as the prograding Tuwaiq Moutain Group filled
the basin. At -143.76 tectonic accommodation was reduced and sea level fell below the
basin margin followed by a rise in relative sea level and the Jubaila Formation onlappping
the margin. This was followed by a drop in sea level the exposed the shelf and eroded this 
and then by further eustatic rise when contemporaneous platform carbonates filled the
carbonate platform crest with a horizontal trajectory. Carbonates accumulated to sea level
and prograded both east and westward from the basin margin crest. To the east the Hanifa
basin then filled with evaporites.

Depth to carbonate accumulation rates of Hanifa ISB

Pelagic carbonate accumulation rates of Hanifa ISB

Rates of tectonic movement in the Hanifa ISB

Original basin surface of Hanifa ISB, and the 
unconformity above the Jubaila Formation.
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Major Conclusion

Conclusions
The simulations suggest that the driving mechanisms behind accommodation,
though model dependent, are the product of both a varying eustatic driver and 
an equally important varying tectonic driver. Both eustasy and tectonic 
subsidence appear to have moved in and out of phase with each other. In the 
simulation portions of the cyclic sedimentary section are produced when 
eustatic accommodation lies above the depositional surface, but when the 
rates of tectonic accommodation are slow, then eustatic sea level drops below 
the carbonate depositional surface and long periods of often unrecognized 
exposure ensue. 
An argument against such a model might be the lack of diagenetic evidence 
of long exposure but one finds sections of sedimentary rock that from 
radiometric dating suggest long periods of time are involved in the creation 
of carbonate sections which show only evidence of short lived exposure. Our 
conclusion from running the simulations is that both eustatic and tectonic 
accommodation may be both rapid or may be slow. 
Often the easy out, when looking at sedimentary sections, is to assume that 
the rate of tectonic movement was slow.  However the simulations argue 
against this. Never the less it has to be accepted that this is an unprovable
hypothesis, though from our point of view this is an elegant proposal even
though conceptual models are the building blocks of the simulations.
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East West Cross Section of the Bab Basin for the Aptian to Early Albian 

Approximate Location of Aptian/Albian ISBs

Simulation results of the fill of the Aptian/Albian ISBs

Simulation output tracking fill of the Aptian/Albian ISBs

Depth to carbonate accumulation rates of Bab ISB Pelagic carbonate accumulation rates of Bab ISB Shale accumulation rates of Bab ISB

Simulated sedimentary fill of the Bab basin used the sea level curve proposed by Maurer et al 2012 for the Aptian Albian.  These authors proposed a glacially induced sea level low from 
-117 to -113 MYBP.  Prior to the eustatic fall contemporaneous rudist rich carbonates formed  clinoforms that accumulated down slope from sea level to the deepest portions of the basin
at around 200 meters. This sedimentary fill was close 100% carbonate but following the sea level low at -117 alternations of shale and carbonate filled the basin margin. Around -113 MYBP
in the mid Albian eustatic sea level rose while carbonate accumulation fell and the Wasia calcareous shale filled and onlapped the basin margin.
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