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Abstract

Two critical conceptual sequence stratigraphic models for exploration and production were analyzed with sedimentary computer simulations of the
Jurassic and Cretaceous sedimentary fill of the Intrashelf Basins (ISB) of the Eastern margin the Arabian Plate. One tracked the Hanifa Basin fill from
Jurassic argillaceous carbonates to evaporites to the Cretaceous carbonates and the other the Aptian/Albian fill of the Bab ISB during a glacially induced
sea level low. The Hanifa ISB simulation demonstrated Lower to Middle Jurassic sediments onlapped the uplifted eastern plate margin of the UAE and
Oman as carbonates prograded and filled westward. Uplift ended Middle Jurassic accumulation with subaerial and progressive erosion of the Tuwaiq and
Dhruma Formations on the eastern plate margin. Margin collapse caused a drowning unconformity. Westward of the platform margin the intra-shelf basin
a base-level fall accompanied Arab and Hith evaporites accumulation. In the Early Cretaceous, the platform extended to North Oman with deposition of
argillaceous hemipelagic carbonates of the Habshan. The lack of evaporites supports a climatic change from the Jurassic arid climate to a Cretaceous
humid one. The simulation of the Mid Cretaceous carbonates supports division into Early Aptian and Late Aptian carbonate platform second order
supersequences that aggraded and prograded to fill the Bab ISB. An unconformity initiates the sequence with westward prograding lowstand clinoforms
onlapping eastward onto the Lower to early Upper Aptian carbonate platform of the SW margin of the Bab ISB. The simulation captures an initial sharp
sea-level drop of 35-40 m from the early Upper Aptian shelf break to the topset of the first lowstand clinoform, and the sea-level drop by another 10 m
during the progradation of following eight clinoforms. Each progradational pulse of the clinoforms is modeled over 405 Kk.y. Simulation illustrates the
initial sharp sea-level drop of some 40 m followed by continued slow sea-level fall producing lowstand clinoforms prograding towards the 1SB. Sedpak,
developed at the University of South Carolina assumes clastic transport based on slopes and carbonate production based on water depth. Output
geometries display a sequence stratigraphic framework of erosional and depositional surfaces of the simulated section enabling the extension of
interpretation of depositional setting and predictions of lithofacies geometries away from well data.
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Introduction to SEDPAK

The computer simulation sedimentary SEDPAK was developed at the
University of South Carolina as a simulation tool that models the
geometry of the generalized lithofacies of a basin, resulting from the
interaction between the major geological processes including:

Eustatic Sea Level
Tectonic Movement
Sediment Accumulation

SEDPAK constructs empirical models of sedimentary geometry. These
sedimentary geometries are created by the infilling of a two
dimensional basin from both sides with a combination of in situ
carbonate growth and clastic sediment in the 15 steps outlined to

the right.

Intuitive model input parameters are based on physical processes,
including clastic transport based on depositional distance, quantity
and slopes and carbonate production based on water depth. Data
entry is accomplished by using a graphical user interface. Values

are entered for the initial basin configuration and, as a function of
time, the following variables may be specified: local tectonic behavior,
sea level behavior, amount and direction of clastic deposition,
accumulation rates of carbonates both as a function of water depth
and pelagic accumulation. The model traces the evolving geometries
of clastic and carbonate sediments through time, responding to the
depositional processes previously itemized. Sediment geometries are
plotted as they are computed, so the results are viewed immediately.
Based upon these observations, parameters can be changed
interactively and the program rerun until the resultant geometries

are satisfactory.

Rates of both carbonate and clastic sediment accumulation and
transport distance down slope are modeled in two dimensional
simulation space, and offer valuable insight into a more quantitative
modeling approach. Further information on the fabrics of the
deposits can be obtained by means of coupling computer models of
sedimentary geometries with physically based submodels that
describe the spatial and temporal evolution of relatively small
portions of the entire system.

Output geometries display a sequence stratigraphic framework of
erosional and depositional surfaces of the simulated section.

The origins of sediment geometries and facies are interpreted by
comparison with observations of similar features in modern
sedimentary systems and their processes andthen the interpretations
are tested with the SEDPAK simulation. The question is: do input
parameters match those inferred from current field observations
parameters set to create basic sequences stratigraphic systems
tracts, including prograding low-stand and highstand systems tracts,
and retrogradational transgressive systems tracts? The same applies
to in-situ carbonate accumulation. Are the depth-production rates
reasonable?

Computer modeling of sedimentary geometries that match
interpreted sections is a repetitive exercise in parameter estimation,
viewing of resulting geometries and adjusting of parameters to
converge on a best match.

SEDPAK extends interpretation of depositional setting and
predictions of lithofacies geometries away from the studied areas.
It aids prediction of facies likely to contain both

hydrocarbon and water resources and their characteristic fabrics.
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Within each time step, a fixed sequence of operations creates or modifies the sedimentary
geometries. First, tectonic adjustments change the accommodation at points defined by the
user across the basin. Next, the intersection of the sea level position with the basin surface
defines a bayline location (Posamentier and Vail, 1988) marking the base of the alluvial plain.
Sediment eroded landward from the bayline location is added to the sediment supply.
Seaward of the bayline, sediment erodes or is deposited according to geometrical rules. After
clastic deposition is completed, carbonates accumulate in-situ to form reefs. From the reef
positions, excess carbonate is transported downslope as talus or turbidite, or backslope as
lagoonal sediment. Next, a pelagic drape, specified as a rate, blankets the submarine setting.
Sediment loading and compaction adjustments, followed by winnowing of shales, and
out-of-plane erosion and deposition complete the operations for the time step. These
operations are summarized by the 15 steps are represented above diagramatically.
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Schematic representation of Erosion. Sediment above

the erosional line at columns Cn-2 and Cn-4 is removed.

No sediment is eroded from Cn-1 or Cn-3. Eroded

sediment is returned to the sediment supply for later deposition.
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= in a landward direction to the right, wave damping rates (Wnr)
- v T Y are subtracted from the carbonate rates (Cnr) where n is the
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Turbidite

Excess carbonate production is bypassed in the
Turbidite lagoon and basin. A proportion of the excess is
transported either into the lagoon or basin as a
percentage. For each proportion, another
percentage can be specified as talus or turbidites

with specified distance of penetration.
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Simulated sedimentary fill of the Marrat basin used the sea level curve proposed 7 2 -
by Haq et al 2012 for the lower Jurassic. There was sea level high from -182 to | 5‘ L
-177 MYBP. Prior to the eustatic rise contemporaneous platform carbonates ‘ ‘ erhu Level <Tgw
filled the carbonate platform but post -182 carbonates formed clinoforms whose - i e ietonce (k) Depthilith = 1076 oo 60 420
trajectory changed from horizontal to vertical while carbonates accumulated H i ’ ishonee tkmy Bepthaleih = AR :
CG.SLC; Kol 470 Kon 2014 down slope from sea level to the deepest portions of the basin at around 150 ; 1 e Kot 0 K 2010
meters. This sedimentary fill was a mix of carbonate and shale. Around . . et i s o a o o Simulation output tracking fill of the Aptian/Albian ISBs
-177 MYBP rates of eustatic sea level rise slowed while carbonate accumulation Be 2 ) r R
filled the basin and prograded out from the basin margin. [ 5]
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= Conclusions
high low ———— upstepping =N _—_—_— The simulations suggest that the driving mechanisms behind accommodation,
Iinkvofelustatic pycle;;s tg though model dependent, are the product of both a varying eustatic driver and
o : e ! S regional tectonic subsidence an equally important varying tectonic driver. Both eustasy and tectonic
e e e o = =i — e . . subsidence appear to have moved in and out of phase with each other. In the
" . ) Major Conclusion sediments onlap time " simulation portions of the cyclic sedimentary section are produced when
Depth to carbonate accumulation rates of Hanifa ISB shelf & prograde gl eustatic accommodation lies above the depositional surface, but when the
. — T eod™ o ¥ rates of tectonic accommodation are slow, then eustatic sea level drops below
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A4 4 of tectonic subsidence shelf & erosion ti An argument against such a model might be the lack of diagenetic evidence
J & lowstand of long exposure but one finds sections of sedimentary rock that from
. and eUStaSy qs source progradation radiometric dating suggest long periods of time are involved in the creation
of accomodation. of carbonate sections which show only evidence of short lived exposure. Our
I @ ) constant slow base level rise accelerating base level rise conclusion from running the simulations is that both eustatic and tectonic
e e ———— = Htifé%’;',c—- aggrading platform @ rates of aggradation constant with time rates of progradation increase with time accommodation may be both rapid or may be slow.
eustatic widespread peritidal sheif carbonates rates of aggradation increase with time Often the easy out, when looking at sedimentary sections, is to assume that
' @ JJ\/\'\ signal e prograding cycles cyclic base level rise o decelerating base level rise the rate of tectonic movement was slow. However the simulations argue
o @ rates of progradation constant with time rates of progradation increase with time, against this. Never the less it has to be accepted that this is an unprovable
—— E E ) = 5 & gzggz’cc‘ggafrg gﬁ%%‘zow rates of aggradation constant with time rates of aggradation decrease with time hypothesis, though from our point of view this is an elegant proposal even
- - — | i e e o | O E— - = emergent coastal margin margin trajectory sequence — dlinoform  ——___ though conceptual models are the building blocks of the simulations.
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