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Abstract 

 

This article is a retrospective of the author‟s Ph.D. research, conducted under the supervision of Dr. Eric Mountjoy, a lifelong student of 

Cordilleran geology and distinguished professor of geology at McGill University, on the occasion of a posthumous special session in his 

honour at the GeoConvention 2012 conference. This research, undertaken in the late 1980‟s to mid-1990‟s, contributed to insights on the 

structural geology and kinematics of the Central Canadian Rocky Mountains in particular, and thin-skinned thrust belt development in general. 

This research incorporated field observations and mapping, analysis and cross-sectional interpretation of subsurface data, and development and 

application of computer models to address the formation and utility of displacement transfer zones. 

 

Introduction 

 

"What about transfer zones?" It was with this seemingly simple but provocative question from Eric Mountjoy that I was drawn into Canadian 

Cordilleran geology and thrust tectonics research. The concept of displacement transfer zones was originally elucidated by Dahlstrom (1969), 

among other key concepts, as one of the main mechanisms of thrust-and-fold belt development. He proposed that thrust transfer zones 

represent a wide-spread, large-scale deformation mechanism for thrust-and-fold belts, with exemplars from the Canadian Rocky Mountains.  

 

A thrust transfer zone is defined as the zone of overlap between two or more thrusts that are linked via a common underlying basal décollement 

(Figure 1a). Dahlstrom (1969, p. 752) described this as “a kind of lap joint wherein the fault whose displacement is diminishing is replaced by 

an echelon fault whose displacement is increasing”. Transfer zones allow individual faults to have limited along-strike length and rapidly 

varying thrust displacement, while the thrust belt as a whole has near uniform or very slowly varying total shortening along its trend.  

 

The “transfer” of fault motion between overlapping thrust faults is an appealing concept, especially when applied to the final configuration of a 

thrust belt. The Rocky Mountains and Foothills evolved into a series of overlapping thrust sheets that together, at the scale of the entire belt, 



behaved as a loosely coherent thrust plate as it progressively deformed and advanced into the foreland above a common basal décollement. 

Within this broad thrust belt, shortening is concentrated on a relatively small number of large thrust faults. As Dahlstrom (1969, p. 753) put it: 

“Recognition of transfer zones enables correlations to be made between thrust faults. Although one fault terminates, its place is taken by 

another and the zone of thrusting persists. On this basis, a frontal zone and five principal zones of thrusting can be identified within the 

Foothills and Front Ranges over a distance of some 400 miles (643.7 km).” 

 

Dahlstrom (1969) concluded from his observation of this series of thrusts faults with overlapping terminations (Figure 1b) that ”transfer zones” 

accommodated the redistribution of thrust displacement between adjacent thrusts. Some of the transfer zones he identified happened to be in 

Eric Mountjoy‟s Ph.D. thesis area: the Miette area map sheet (1960; 2010). As an example, both terminations of the Nikanassin Thrust Fault 

occur in this vicinity, where they overlap with other faults. The northwest termination overlaps with the Fiddle River Thrust (unnamed on the 

Dahlstrom, 1969, figure 14 map), whereas its southeast termination overlaps with the Bighorn Thrust. The very large and extensive McConnell 

Thrust also terminates in the same general area and overlaps with other adjacent faults.  

 

Early Mapping 

 

In teaching Rocky Mountain structural geology at McGill University, Eric often referred to Dahlstrom‟s (1969, 1970) watershed articles 

because they were firmly based on several decades of field observations, petroleum industry deep drilling, and seismic surveys. The articles 

also provided a coherent picture of many discrete features of the Rocky Mountains and a geometrically consistent method to „balance‟ cross-

sections that is still used today to constrain our interpretations of the subsurface geometry of these regions. The transfer zone concept intrigued 

Eric, who thought that through further field work, one might identify features specifically related to these thrust transfer zones. Eric was an 

accomplished field geologist: his Miette map (1960; 2010) is a work of art, a marvel of folds, faults, and deformed layer-cake stratigraphy that, 

like all of his geological maps, demanded hundreds of hours of field work and airphoto interpretation and transcription. He was also a gifted 

drafter of balanced cross-sections and published many of these with maps. It is his disciplined approach that yielded keystone articles, maps, 

and cross-sections (such as Price and Mountjoy, 1970), and fostered and led to a long-standing geological research partnership with Raymond 

Price, beginning with the GSC Bow-Athabasca mapping operation in the 1960s.  

 

The early mapping by Mountjoy had not focused on mesoscale features (veins, fractures and cleavage) nor anticipated the concept of transfer 

zones. Therefore, I was sent to the Canadian Rocky Mountains (Figure 2) to observe and properly document mesoscopic and macroscale 

structures in a putative transfer zone. This proved to be an elusive quest: after three field seasons, I returned to McGill with maps and many 

field observations of veins, fractures, and other structures, but I could not clearly identify or describe the particular properties of a single 

transfer zone. Perhaps in near-desperation, I turned to constructing balanced cross-sections, working on a series through the Foothills to better 

understand how thrust faults might transfer displacement from one to another. One principal frustration was trying to constrain the rate of 

displacement transfer between thrusts in transfer zones because it is very difficult to measure the displacement on a particular fault in cross-

section relative to another one. The labour-intense exercise of constructing a closely spaced series of ten cross-sections across the Front Ranges 

and Foothills was very instructive toward understanding many fundamental features of thin-skinned thrust-belt geology.  

 



We were confronted with more „zone‟ questions beyond the transfer zones. The cross sections revealed a series of imbricated „triangle zones‟ 

and folded thrusts gliding on a series of „décollement zones‟ anchored in weak stratigraphic layers. We were in fact stumbling across features 

that had been noted by other mappers of Foothills geology, foremost among them being R.J.W. Douglas who had mapped the classic 

imbricated folded faults of the Chungo Creek area (Douglas, 1953). Our series of cross sections, based on field and subsurface observations, 

were eventually published in Lebel et al. (1996), where we concluded that multiple décollement levels had been active during the evolution of 

the belt and that they had interacted and linked with one another. This new knowledge proved very helpful in mapping the southern Canadian 

Foothills in the late 1990s with other GSC researchers, and led to more insights on triangle zones and multiple décollements in the Foothills 

(Stockmal et al., 2001). 

 

“Bow-and-Arrow Rule” and Thrust Fault Modeling 

 

But in 1986, Eric‟s transfer zone question was still not fully resolved. Were there specific observable structures associated with these inferred 

transfer zones? Outcrop-scale structural analysis of veins and other elements was instructive, but did not reveal anything immediately obvious 

about thrust sheet mechanics. Returning to the scientific literature, we realized that the question had to be framed differently. How does a 

nascent thrust fault evolve to become one of a relative few dominant faults that one finds in the Rockies, the Alps, or the Himalayas? 

Dahlstrom‟s ideas had provoked Eric‟s first interests in this direction, but it was the “Bow-and-Arrow Rule” of Elliott (1976) (Figure 3), and 

similar insights of others examining the lateral propagation of thrust faults, that provided us with a new perspective. The bow-and-arrow rule 

states that thrust displacement should be at its maximum near the centre of a thrust sheet and decrease laterally to zero at its terminations (the 

intersections of the fault tip line with the topographic surface), and that thrust faults propagate both forward and laterally as they develop 

through time. 

 

It was not immediately evident how transfer zones and the concept of linked thrust sheets as composite thrust zones (Dahlstrom, 1969) should 

be reconciled with the concept of laterally propagating thrust sheets (Elliott, 1976). We realized that if thrust faults indeed evolved through 

lateral as well as forward propagation, then the transfer zones might simply be artifacts of their final propagation phase, rather than a reflection 

of the interlocked mechanics of multiple thrust sheets across a broad thrust belt gliding above a common basal décollement. On the other hand, 

very rapid lateral propagation at the earliest stages of thrust fault formation could still lead to subsequent interaction between two or more 

nearly aligned thrusts via a transfer zone. At that time, active thrust faults were being studied by neotectonic geologists and seismologists (e.g. 

Cowie and Scholtz, 1992 a, b) and their findings also challenged the idea that thrust faults did not grow slowly and substantially laterally 

through time. With these pieces of the puzzle in hand, we were ready to try to model thrust belts as a series of independent thrust faults linked 

through a basal décollement, that also propagating laterally through a series of independent discrete events.  

 

In the early 1990s, three-dimensional analogue simulations of thrust belts were being developed using plasticine-based centrifuge models. The 

centrifuge models of John Dixon and his students at Queen‟s University (e.g. Liu and Dixon, 1991) produced thrust fault patterns similar to 

those found in nature. Through careful physical dissection (and therefore destruction) of these models in their final deformed states, one could 

infer how individual faults had propagated and associated folds had developed. However, the only observations possible during the 

deformation of an analogue model was periodic viewing of its upper surface (essentially a map view), through regular peeking in the 

temporarily stopped centrifuge. 



 

Necessity is the mother of invention. Finding ourselves without such centrifuge equipment, an idea emerged: why not try to develop a 

numerical analogue model of thrust belt development using a desktop computer? This would be a thrust model that would start from a specified 

nucleation point and lead to a full-grown thrust fault, constrained by physical parameters from the published literature, such as the bow-and-

arrow rule, and the stepwise growth of faults through minute “earthquake-like fault propagation events” (Figure 4) (see Lebel and Mountjoy, 

1995 for a full description). This approach proved extraordinarily difficult to develop for the neophyte computer programmer that I was, using 

a rather slow Apple Macintosh microcomputer, in part because each new iteration of the program code and testing confronted us with new 

conceptual problems such as how to deal with the intersections of faults. The biggest problem was how to best represent the third (depth) 

dimension of the thrust belt. We did this with a 2½-D model, using a computer bitmap, where we moved individual pixels on the screen as if 

they were pieces of a thrust sheet, while following each of these pixels in the “third dimension” through a tracking matrix. We could thus know 

whether a particular pixel was conceptually ramping up over another one and thus track the possible intersections of faults. The computer 

programs (two were developed, named „THREE THRUSTS‟ and „OVERLAP‟) and the computer-generated models proved to be a rich source 

of insights into the evolution of a thrust belt. One of the programs demonstrated that a thrust belt final state, with relatively uniform shortening 

along strike, could be generated through a series of small faults that gradually grow to span large overlapping segments of the thrust belt 

(Figure 5), a stage of development not explicitly addressed by Dahlstrom (1969). 

 

Finally, all the pieces of the puzzle were coming together. Structural analysis of the mesoscale structural elements (fractures, veins, fold axes 

and cleavages) along the Nikanassin thrust sheet was consistent with the conclusion that not only was initially independent thrust fault 

propagation a possible mechanism to balance shortening along the thrust belt (leading to the establishment of major thrust faults linked through 

a basal décollement), but also that strain distributed within thrust sheets though fractures and veins could reflect curvilinear patterns of 

individual structural domain orientations along the length of the thrust sheet. We speculated that 1 mm wide, but metres-long a-c veins 

observed across the strike of the fault were perhaps another fundamental mesostructure that allowed for the redistribution of strain along the 

thrust sheet to approach an idealized “bow” shape, as the underlying thrust fault propagated laterally at both of its extremities.  

 

Conclusions 

 

The thrust belt development and the related transfer zone concept posed by Dahlstrom (1969) and suggested by Eric Mountjoy in 1984 as a 

topic for my Ph.D. study has proven to be a fascinating field for research. Far from being an exhausted subject, many questions remain that can 

be pursued through future inquiries spawned from Eric‟s original transfer zone question. There are hints in current neotectonic and 

seismological research that further integrated geological investigations from these fields, through studies of micro-seismicity and micro-

geodesy may lead to new insights and a better understanding of accumulated strain and its destructive release through earthquakes. Now that 

we know more about the „How‟, in the context of earthquake mitigation, the next good question might be how do we predict where and when 

active thrust development occurs?  
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a) b)  

 
Figure 1. (a) Conceptual cross-section, and (b) map model of the shift of displacement between thrusts in a transfer zone as outlined by 

Dahlstrom (1969). Note that (b) is a portion of the original Dahlstrom (1969) figure, centred on the Miette, Cadomin, Cardinal River, and 

Mountain Park areas where the author worked with Eric Mountjoy, as described in this article. The Nikanassin thrust sheet and fault were 

selected for focused structural studies because it brought a slice of the Paleozoic carbonates to the surface and died neatly at both ends through 

transfer zones outlined by Dahlstrom (1969). The McConnell thrust sheet that ends in the area was also the subject of investigations.  
 



   
 

Figure 2. The author on top of a ridge in the Miette area, overlooking the famous Miette Hot Springs in 1986. In the upper left in the distance is 

the Nikanassin thrust fault that gradually dies out toward the north and overlaps with a series of smaller thrust faults and a classic fault-tip 

anticline-syncline pair seen just behind the author. The famous Miette Reef Complex is in the distance in the upper right corner of the picture. 



                                                                 
 

Figure 3. Comparison between various possibilities of simple models of kinematic patterns leading to a bow shape of a thrust fault (Lebel, 

1993) with reference to the ‘Bow and Arrow’ rule of Elliott (1976). 



 
 

Figure 4. Computer model of a thrust fault evolving from a nucleation point F(0) through a series of propagation positions Fx(1), Fx(2). See 

Lebel and Mountjoy (1995) for full description. 



 
 

Figure 5. Lebel (1993) model of fairly even distribution of along strike thrust belt shortening through a network of gradually growing thrust 

faults. S = average shortening of 40.39 km; minS = minimum shortening; nbthrust = number of thrusts (19), etc. See Lebel and Mountjoy 

(1995) for details. 


