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Abstract 

 

The Campanian Annona Chalk is a shallow (1400 to 1700 foot, however it may have been buried deeper) producing reservoir of light oil (API 

gravity 42 to 44). The reservoir is a fractured, slightly argillaceous lime chalk, as is the Ozan chalk below. Both units were deposited on the 

Upper Cretaceous drowned shelf in a moderate-depth, aerobic setting as evidenced by numerous burrows and a high ratio of benthic to 

planktonic foraminifera. Clay-size material (up to 20%) composed of smectite and microquartz is slightly higher in the Ozan than the Annona. 

Major allochems are benthic and planktonic foraminifera and fragments of echinoids, ostracods, and bivalves in a finer matrix of coccoliths and 

coccoliths elements. The coccoliths and associated elements range in size from less than 400 nm to a few microns. The pore network resulting 

from this fine-grain size and burial cementation produces a reservoir composed of nano- to micropores. Pore throats are in the nanometer range. 

Porosity averages between 23 to 27%. The origin of this extremely fine pore network is depositional. The original pores between the coccoliths 

and fragments are interparticle. Minor intraparticle pores are associated with the foraminifera and some voids in the coccoliths.  

 

The coccosphere bodies easily breakdown to coccolith plates and individual elements. With the degradation of the polysaccharides (organic 

matter that hold the coccolith together) the coccoliths fragments separate. This results in finer material and associated finer pores. Later 

cementation will reduce these early formed pores. The minor amount of clay affects pore size by dividing the interparticle pores into multiple 

smaller pores. The clay also appears to promote pressure solution and enhanced cementation. The result of all these processes is to produce a 

porous reservoir with modest permeability. Natural and induced fractures form the collection network for the oil, but the nano- to micropores 

are the storage component of the reservoir. 
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General Micropore Types 

Mg-calcite to calcite
(diagenetic)

Coccoliths
(depositional)
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(depositional/diagenetic)

Coccolith-rich sediment 
(depositional) 

Loucks et al. (2013) 



Project Goals 

 Present depositional setting of the 

Annona and Ozan Chalks 
 

 Review lithofacies 
 

 Define pore network and reservoir 

quality 
 

 



Correlation of Upper Cretaceous 

Chalks 

Modified from Bottjer (1986) 
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Regional Paleogeographic Setting  
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Examples of Biota 

Tritaxia ellisorae Ammobaculites sp. Nonionella austinana ? 
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Whole coccosphere 

Coccolith Hash Matrix 

Coccoliths 
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Coccolith-rich limestone with cementation 
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1675 ft: SEM chip sample 

Predominant allochems are 

foraminifera and coccoliths 

Texture and Fabric 
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General Diagenesis of 
Chalks 

 Compaction (~75%      ~50%*) 
 

 Segmentation 
 

 Cementation 
 

 Effects of clay 
 

 

*Based on diagrams from Scholle (1977) 



Segmentation of Coccospheres 

 Coccosphere (unicellular 
planktonic algae) 

 Partly held together by 
CAPs (coccolith-associated 
polysaccharides) 

 Mechanical compaction and 
bioturbation may aid in 
segmentation 
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Cementation 
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Cementation 
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Effects of Clay 

Clay 
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Thin-Section View: Micropores 

Continuous micropores in matrix 

Micropores 

Blue fluorescent dyed thins section 

Plain light UV light 
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Thin-Section View: Micropores 

Large, patchy areas of micropores; patches may be 

associated with peloids 

Micropore patches 
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Pore Network (FSEM Ar-Milled)  

Ozan nanometer- to micron-scale pores 
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Pore Network (FSEM Ar-Milled)  
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Pore Network (FSEM Ar-Milled)  

Less compaction of coccolith elements inside globigerinid 
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Pore Network (FSEM Ar-Milled)  

 Ozan nanometer- to micrometer-scale pores with clay 

 Clay reduces pore connectivity 
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Analysis 
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Annona 
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Annona 

Mean porosity = 23.8% 

Mean permeability = 7.10 md 

 

Ozan 

Mean porosity = 17.4% 

Mean permeability = 23.80 md 

 



Conclusion 

 Deposited as chalk on an oxygenated, 

drowned shelf 
 

 Predominately calcite with 2 to 8 percent 

clay and microquartz 
 

 Pore network mainly primary interparticle 

micropores and intercrystalline nanopores 

within coccolith hash reduced by 

compaction and cementation 
 

 Will nanopores affect Sw relative to 

micropores? 
 

 


