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Abstract

This study - funded under U.S. Department of Energy National Energy Technology Laboratory award DE-FE-0002142 - uses outcrop and core
observations, a diverse electric log suite, a VSP survey, in-bore testing (i.e., DST, injection tests, and fluid sampling), a variety of rock/fluid
analyses, and a wide range of seismic attributes derived from a 3-D seismic survey. The primary data sources used in this study are a 5-mile by
5-mile seismic survey, a 12,810-foot-deep stratigraphic test well, 916 feet of high-quality core, and regional outcrop observations.

The robust databases derived from the sources listed above were designed to optimize the characterization of the potential CO, storage site at
the Rock Springs Uplift, Wyoming for the Madison Limestone and Weber/Tensleep Sandstone: prime storage reservoirs in the northern Rocky
Mountain basins. This study aims to build a realistic 3-D geological property model by combining lithofacies/petrophysical analyses with
seismic attribute computations and mapping. Using this approach - along with outstanding correlations between laboratory-measured porosity
and permeability, sonic velocity and log porosity, and acoustic impedance and density porosity - geological property models for the Madison
and Weber/Tensleep were constructed. Inherent to the geological property models of the targeted reservoir intervals are the heterogeneities
observed in outcrop, core, petrophysical logs, and seismic attributes. Three-dimensional computational grids were populated with the
geological property models, and the grids were then used to numerically simulate a variety of CO; injection scenarios for specific reservoir
intervals. These scenarios demonstrate that even in the most favorable reservoir interval - for example, the middle Madison Limestone -
injection well sites in the 5-mile by 5-mile study area vary by an order of magnitude both in injection rates and storage capacity. Despite these
heterogeneities, the dolomitized middle Madison on the Rock Springs Uplift remains an outstanding potential commercial CO, storage site.
Siting a commercial-scale CO, storage facility requires a comprehensive reservoir/site characterization study similar to that described above for
the Rock Springs Uplift, in order to optimize CO; injection/storage and reduce risk.
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RSU-1 well: Madison Limestone Formation lithofacies zones
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Sonic/Seismic velocity vs. density porosity
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Upper Madison Limestone
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Middle Madison Limestone
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Lower Middle Madison Limestone
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Cross Plot of Porosity vs Permeability for Madison Limestone, Wyoming
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Madison Limestone Dual Porosity System
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Pathway to Developing
A 3-D Model of Reservoir Heterogeneity
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Permeability model of the Madison Limestone
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I I(:02 In]et.;tion Silrrslalgt'itor:' Results from FEHM for the Madison Limestone, Rock Springs Uplift
. 5 : njection Interva , Heterogeneity
Upper Middle Madison Limestone In]ec(ion Rate 31.71kg/s, 1 MT/year

| Tamme w ‘v 100

Total CO2 Injection: 50 MT/50 year
Total Water Displaced: 57 MT/50 year

Porosity
>20% pumm
10-15%-

5-10% -
Hydro Fracture Pressure, 60% Overburden Press|

PCO2, Mpa

<5%

PCO2, Mpa
[ —— e Total CO2 Inj., ton

Total Water Dis. ton
@ Stratigraphic Depth at RSUT from 12225 1o 12651 ft
le Hydrostatic Pressure: 38 MPa
test well oint overburden Pressu MPa

1 mile

Total CO2 Inj., ton, Total Water Dis. ton

[ N
40 50 60
YEAR

II CO2 Injection Simulation Results from FEHM for the Madison Limestone, Rock Springs Uplift III CO2 Injection Simulation Results from FEHM for the Madison Limestone, Rock Springs Uplift
Injection Interval 300 ft, Heterogeneity Injection Interval 300 ft, Heterogeneity
Injection Rate 15.85 kg/s, 0.5 MT/year Injection Rate 6.342 kg/s, 200 kt/year
100 10° 100

Ll

al bl

Total CO2 Injection: 25 MT/50 year —3 ons
Total Water Displaced: 25 MT/50 year ;g::: svgfelrn eggm e1d 9 Qg’/ﬁg /gga;ear

PCO2, Mpa

Hydro Fracture Pressure, 60% Overburden Pressu Hydro Fracture Pressure, 60% Overburden Pressure

PCO2, Mpa
————— Total CO2 nj, ton
Total Water Dis. ton

Total CO2 Inj., ton, Total Water Dis. ton
PCO2, Mpa
Total CO2 Inj., ton, Total Water Dis. ton

PCO2 Madison Depth at RSU1 from 12225 to 12651 ft

B , Mpa i i 5
dison Depth at RSUT from 12225 10 12651 ft Total €02 In, ton Aache poli Hydrostatic Presaurs: S8 Mes
|-|Middle point Hydrostatic Pressure: 38 MPa Total Water Dis. ton =
|-|Middle point overburden Pressure: 100 MPa
L el N T
0 0

10 20 30 40 50 60 70 80 90 10
YEAR

ool b bt b bl

Carbon Management
Institute 5 Q%UNI\/ERSITV OF WVYOMING




Upper Middle Madison Limestone
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FEHM CO2 Injection Results for the Madison Limestone
500 kt/y for 50 Years, Heterogenous Properties (Low phi and k Area)
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FEHM CO2 Injection Simulation Results for the Madison Limestone
1 mt/y for 50 Years, Heterogenous Properties (High phi and K Area)
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CO2 Injection Simulation Results from FEHM for the Weber Sandstone, Rock Springs Uplift
Injection Interval 700 ft, Heterogeneity
Injection Rate 9.51 kg/s, 0.3 MT/year
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CO2 Plume After 0.3 Mt Injected To The Weber Sandstone For 50 Years
Heterogeneity Reservoir Properties

CO, Saturation

W

L BT ]

L]

L]

e et ot o a e v i wt n wl
SomahubARNNODNNBR

Carbon Management
Institute 5 Q%UNI\/ERSIT\/ OF WVYOMING




Comparison of CO; Storage Capacity
Utilizing 3 Different Techniques
— 5 mi X 5 mi storage domain

Static
Volumetric Dynamic Numerical Simulation® Dynamic Numerical Simulation®
Approach’ Homogenous Reservoir Model Heterogeneous Reservoir Model

Storage Injection Storage
Capacity, Rate, Capacity,
Mt Mty Mt

Injection Storage
Rate, Capacity,
Mtfy Mt

Area, Thickness,

Injection
km? m

Wells

Injection

Formation Wells

Weber 64 210

Madison 64 120

1 - USGS Open File Report 2009-1035
2 - FEHM, Los Alomos National Laboratory
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Comparison of CO, Storage Parameters
for 15 and 30 Mt/year for 50 years
CO- Injection Scenarios
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