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Abstract

The Cretaceous Niobrara Formation produces oil and gas from the well studied chalk/marl cycles deposited in the Western Interior Cretaceous
(WIS) Seaway. Despite relatively easy subsurface correlation, the problem of understanding reservoir property distribution persists. We
evaluate the correspondence between depositional facies, cycle stacking pattern and reservoir characteristics, such as porosity, permeability,
wetting phase, and brittleness.

This work follows detailed facies delineation resulting from our analysis of twelve slabbed cores through the Niobrara interval in the DJ Basin.
Facies characteristics were defined conventionally (lithology, sedimentary structures, ichnofabrics), enhanced with petrographic analysis and
SEM imaging. Facies and sedimentologic data were captured quantitatively using WellCAD core description software. We then integrated
facies and cycle data at two scales: 1) basin scale, by detailed correlation and mapping the extent of facies tracts within chronostratigraphic
units, and 2) reservoir scale, by processing well logs with a fully integrated petrophysical model, calibrated with the depositional facies. Both
raw and processed log data crossplots yielded reasonable relationships with depositional facies, although some features remain
underdetermined using conventional log-data suites.

Regionally, several sequences and their associated systems tracts were defined. Within sequences, lateral shifts in facies tracts occur at cycle
boundaries, corresponding to sea-level- and climate-driven changes in ocean circulation pattern. Increasingly open marine conditions
("transgression") resulted in widespread ‘chalking' cycles, whereas increasingly restricted marine conditions ("regression") indicated by
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increasing clay-rich fluvial detritus resulted in regional and local ‘marling' cycles. Aggradational cycle turnarounds are associated with two
important facies - the most favorable reservoir facies and highest source-rock facies. At chalking-to-marling turnarounds, reservoir facies occur
interbedded with thin organic-rich zones having a crinkled, microbial mat-like aspect.

Integration of this facies- and sequence-based model resulted in an improved understanding of the controls and predictability of Niobrara
reservoir performance.
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ADbstract

The Cretaceous Niobrara Formation produces oil and gas from the well
studied chalk/marl cycles deposited in the Western Interior Cretaceous
(WIS) Seaway. Despite relatively easy subsurface correlation, the
problem of understanding reservoir property distribution persists. We
evaluate the correspondence between depositional facies, cycle
stacking pattern and reservoir characteristics, such as porosity,
permeability, wetting phase, and brittleness.

This work follows detailed facies delineation resulting from our

analysis of twelve slabbed cores through the Niobrara interval in the DJ
Basin. Facies characteristics were defined conventionally (lithology,
sedimentary structures, ichnofabrics), enhanced with petrographic
analysis and SEM imaging. Facies and sedimentologic data were
captured quantitatively using Well CAD core description software. We
then Integrated facies and cycle data at two scales: 1) basin scale,

by detailed correlation and mapping the extent of facies tracts within
chronostratigraphic units, and 2) reservoir scale, by processing well
logs with a fully integrated petrophysical model, calibrated with the
depositional facies. Both raw and processed log data crossplots yielded
reasonable relationships with depositional facies, although some
features remain underdetermined using conventional log data suites.

Regionally, several sequences and their associated systems tracts were
defined. Within sequences, lateral shifts in facies tracts occur at cycle
boundaries, corresponding to sea-level- and climate-driven changes in
ocean circulation pattern. Increasingly open marine conditions
(“transgression’”) resulted in widespread ‘chalking’ cycles, whereas
Increasingly restricted marine conditions (“regression”) indicated by
Increasing clay-rich fluvial detritus resulted in regional and local ‘marling’
cycles. Aggradational cycle turnarounds are associated with two
Important facies — the most favorable reservoir facies and highest source
rock facies. At chalking-to-marling turnarounds, reservoir facies occur
iInterbedded with thin organic-rich zones having a crinkled, microbial
mat-like aspect.

Integration of this facies- and sequence-based model resulted in an
Improved understanding of the controls and predictability of Niobrara
reservoir performance.
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Niobrara Regional GR Cross Sections & Stratigraphy
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Petrophysical Rock Typing The Niobrara:

Flow-Based Rock Types and Connections to Geologic Rock Types

Rock Typing in Unconventional Reservoirs

* |n conventional reservoirs rock typing is based on
flow capacity (i.e., permeability) which is greatly
influenced by depositional rock texture

 |nunco

nventional reservoirs (like the Niobrara) flow

capacity is even more strongly influenced by
depositional fabric, represented as rock type.

e Each of

the key elements (HPV, Brittleness, and

Deliverability) must be accounted for in developing a
rock-typing scheme

e Methods to integrate these three elements will

depenc
availab

oh your reservoir, operating practices and
e data

 Key ste

0s are HPV, Brittleness, and Deliverability

Brittleness as a Estimate of Mechanical
Rock Properties

e What is needed is “relative” brittleness, or the

most brittle rock in a given interval

 Absolute brittleness values have no meaning

* Industry has not reached consensus on
brittleness definitions

Basic Petrophysical Model for HPV Is Key Initial Step
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Fluid Saturation

(ch

e Resistivity-based model calibrated to both RCA
and GRI core-based analysis

 Density-based model inherently flawed due to
issues around density measurement

essential for calibration of final model

At the end of the day that is all that the Archie
Equation does

e Model must take into account clay-based fluids
and calculate a clay-corrected water and
hydrocarbon saturation

 Regionally varying in situ reservoirs fluids

the model.

Large volume of core-based analysis is

anges in GOR) were also accounted for in

Computer Processed Log with Calculated Brittleness

Key is understanding relative Brittleness of Niobrara
Brittleness does not always follow stratigraphy
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Major Geologic Rock Types

Assigned digital value

Loaded into petrophysics project
Relationship between geologic rock
types and petrophysical curves

explored and documented

Deliverability

 The holy grail in unconventional reservoirs

 The rock property which ties most closely to
production is deliverability (production is the

only real parameter we measure).

 We think in terms of absolute permeability,
but what we really want to know is: which
rock will deliver the most oil and gas to the
well-bore post-fracture stimulation

e The term “permeability” is misleading, as it

is determined in the realm of Darcy flow.

Fluid flow is likely non-Darcy in the matrix of

mudstone reservoirs

Computer Processed Log with Geologic Rock Types
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Cross Plot of Water Saturation with Geologic Rock Types

Hydrocarbons are concentrated in certain geologic rock types
Crinkly bedded facies (various types) contain vast majority of HPV
Low SW = Maximum deliverability
Depositional texture has significant impact on productivity
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Observations
"There is a relationship between geologic rock types, log properties, and

Niobrara Petrophysics Conclusions

* Traditional petrophysical workflows, with added rigor

where needed, will allow full scale reservoir
evaluation

e Core-calibrated model is critical

 Conventional lithostratigraphic nomenclature does

not always relate to subsurface rock properties

* There is a correlation between geologic rock types

and calculated log response

* A ssignificant portion of the HPV resides in a core-

based, identifiable geologic rock type

* Flow-based rock typing is possible in unconventional

reservoirs where data types and integrated analysis
are undertaken

Buckles Plot

Layer 2 Niobrara Five Noble Cored Wells in Colorado

e Buckles Plot crossplots SW and PHI
e Coloris Bulk Volume Water (SW*PHI)
e Low BVW (Low SW-Hi Phi) indicates best rock with highest deliverability
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Cross Plot of VCLAY with Geologic Rock Types
Clay content fairly static across geologic rock types
This may be related to low clay content in Niobrara
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