The Future of U.S. Shale and the Role of the Independent*

Scott W. Tinker¹

Search and Discovery Article #70145 (2013) Posted July 22, 2013

Roles for the Independent

- Evaluate low-cost, targeted operations in existing shale gas plays.
- Consider shallow-water offshore lease acquisition opportunities.
- Pioneer development of other organic-rich, tight rock plays (e.g., limestone).
- Develop international opportunities in lower political risk countries.
- Be the bridge between local, state, and federal regulators and policy makers.

Larger Trends

- The scale of energy demand is enormous.
- Oil and gas are a part of the future energy mix, and shale will play a growing role.
- Above-ground challenges are real, and rigorous operational practices are key.
- Energy security—affordable, available, reliable, sustainable—will drive the future energy mix.

Selected References

Fisher, K., 2010, Data confirm safety of well fracturing: The American Oil & Gas Reporter, July 2010, p. 1-4.

Medlock, K.B., III, 2012, U.S. LNG Exports: Truth and Consequence: James A. Baker III Institute for Public Policy of Rice University, 34 p.

Morse, E.L., E.G. Lee, D.P. Ahn, A. Doshi, S.M. Kleinman, and A. Yuen, 2012, Energy 2020: North America, the new Middle East: Citi GPS: Global Perspectives & Solutions, 92 p.

^{*}Adapted from presentation at IPAA Annual Meeting, Dana Point, CA, June, 2013

¹Director, Bureau of Economic Geology, Jackson School of Geosciences, The University of Texas (scott.tinker@abeg.utexas.edu)

National Academies Press, 2009, America's Energy Future, Technology and Transformation: Summary Edition: Committee on America's Energy Future: National Academies Press, Washington, DC. 184 p.

Rao, V., 2012, Shale gas: the promise and the peril: Research Triangle Park, NC. RTI Press, 183 p.

Websites

BP, 2012, BP Statistical Review of World Energy: June 12, 2012. Web accessed July 15, 2013. http://www.bp.com/content/dam/bp/pdf/Statistical-Review-2012/statistical_review_of_world_energy_2012.pdf

Bureau of Economic Geology (BEG), in press, Shale Gas Study: For information see http://www.beg.utexas.edu/info/sloan_barnett.php

Carroll, J., 2013, Barnett shale output to tumble through 2030, study says: Bloomberg, February 28, 2013. Web accessed July 8, 2013. http://www.bloomberg.com/news/2013-02-28/barnett-shale-output-to-tumble-through-2030-study-says.html

ExxonMobil, 2013, The Outlook for energy: A view to 2040: Web accessed July 15, 2013. http://www.exxonmobil.com/Corporate/files/news_pub_eo.pdf

ExxonMobil, 2010, 2010 The Outlook for energy: A view to 2030: Web accessed July 15, 2013. http://www.exxonmobil.com/corporate/files/news-pub-eo-2010.pdf

Gold, R., 2013, Gas boom projected to grow for decades: Wall Street Journal, February 28, 2013. Web accessed July 8, 2013. http://online.wsj.com/article/SB10001424127887323293704578330700203397128.html

Goodwyn, W., 2013, Texas study points to a longer natural gas boom: NPR-All Things Considered. Web accessed July 8, 2013. http://www.npr.org/2013/02/28/173173548/texas-study-points-to-a-longer-natural-gas-boom

Hamilton, J.D., 2012, Oil prices, exhaustible resources, and economic growth: the National Bureau of Economic Research, working paper 17759, online resource, 64 p. Web accessed July 15, 2013. http://www.nber.org/papers/w17759.pdf

Reuters, 2013, U.S. Barnett shale to pump natural gas to 2050-report: Reuters, February 28, 2013. Web accessed July 8, 2013. http://uk.reuters.com/article/2013/02/28/usa-natgas-barnett-idUKL1N0BSDKC20130228

U.S. Energy Information Administration (EIA), 2013, Technically recoverable shale oil and shale gas resources: an assessment of 137 shale formations in 41 countries outside the United States: EIA, 76 p. Web accessed July 15, 2013. http://www.eia.gov/analysis/studies/worldshalegas/pdf/overview.pdf?zscb=28081598

U.S. Energy Information Administration (EIA), 2012, What is shale gas and why is it important?: Web accessed July 15, 2013. http://www.eia.gov/energy in brief/about shale gas.cfm,

University of Texas at Austin, 2013, New, rigorous assessment of shale gas reserves forecasts reliable supply from Barnett Shale through 2030. Web accessed July 8, 2013. http://www.utexas.edu/news/2013/02/28/new-rigorous-assessment-of-shale-gas-reserves-forecasts-reliable-supply-from-barnett-shale-through-2030/

IPAA Annual Meeting Dana Point, CA June 2013

The Future of U.S. Shale & the Role of the Independent

Scott W. Tinker

Bureau of Economic Geology

Jackson School of Geosciences, The University of Texas at Austin

Outline

- A Look Back
- The US Energy Mix
- The Global Energy Mix
- Forward Steps

Austin, Texas October 2004

The Future is Unconventional Impact on Independent Producers

Scott W. Tinker

Bureau of Economic Geology

Jackson School of Geosciences

Summary (2004) Impact on Independent Producers

- Fossil energy will play a critical role in global energy demand for the next half century.
- We are within sight of a natural gas economy.
- US natural gas supply is critical. Unconventional gas and LNG are coming, and vital.
- Research and technology investment is important. The Federal government has a role to play. Speak up!
- Government energy policies should be made around resource and reserve estimates, <u>not</u> annual forecasts.
- The future is bright, and independent producers will be key players.

US Natural Gas (2004 forecast)

Total Natural GasConventional GasUnconventional Gas

IPAA Annual Meeting October 2005

Independents Must Think Unconventionally

Scott W. Tinker

Bureau of Economic Geology Jackson School of Geosciences The University of Texas at Austin

Summary(2005)

- Global demand for fossil fuels remains high
- → Indépendent producers have a key role to play
- → Tomorrow's opportunities are visible today, if you think unconventionally

The Future of U.S. Shale & the Role of the Independent

- A Look Back
- The US Energy Mix
- The Global Energy Mix
- Forward Steps

U.S. Energy Mix (%)

Source: EIA, 2012

U.S. Energy Mix (%)

Source: EIA, 2012

Annual US Oil Production

From: James D. Hamilton, Working Paper 17759, NATIONAL BUREAU OF ECONOMIC RESEARCH, 2012

Annual US Oil Production

U.S. SHALE LIQUIDS PROJECTIONS

Annual US Oil Production

From: James D. Hamilton, Working Paper 17759, NATIONAL BUREAU OF ECONOMIC RESEARCH, 2012

U.S. Natural Gas Production and Reserves

U.S. Natural Gas Production (TcF)

Estimated annual U.S. Dry Shale Natural Gas Production, 2000-2011

Estimated annual U.S. Dry Shale Natural Gas Production, 2000-2011

Unconventional Reservoirs Easy to find, expensive to produce

Orange dots are 20 nm in diameter

Human Hair

50 µm

Hydraulic Fracturing "Fracking"

Water (~88%)

Proppant (~11%)

Friction Reducers: always (polyacrylamide)

Biocides: often (glutaraldehyde, chlorine)

Scale Inhibitors: sometimes (phosphonate)

Surfactants: sometimes (soaps and cleaners)

---- 3,000 – 10,000 feet

3 – 6 million gallons

3,000 to 10,000+ feet

Marcellus Mapped Frac Treatments/TVD

Are there other kinds of tight, organic-rich rocks?

3,000 to 10,000+ feet

3,000 – 10,000 feet

3 – 6 million gallons

Geologic Analysis

We estimate the content of natural gas in the formation for each 1 mi² of the Barnett Shale.

Geologic Analysis

• We estimate the content of natural gas in the formation for each 1 mi² of the Barnett Shale.

t ____

Tinker, 2013

Barnett		
Assumption	Base case	
- Henry Hub price for natural gas	\$4.00/MMBtu	
- Partly drained acreage developable ceiling	80%	
- Undrilled acreage developable ceiling	15%	
- WTI price	\$80/bbl	
- GPL/WTI price ratio	45%	
- Annual technology improvement	0.39%	
- Annual well-cost improvement	0.24%	
- Economic limit for shutting-in a well (dry)	0.05 MMcf/d	
- Economic limit for shutting-in a well (high Btu)	0.029 MMcf/d	
	20 (Tiers 1-4)	
- Minimum completions in a year (dry)	2 (Tiers 5–10)	
	25 (Tiers 2-5)	
- Minimum completions in a year (high Btu)	10 (Tiers 1, 6–10)	

Barnett Production Outlook

Barnett Shale: Base Case

Barnett Shale: Base Case

Base Case Scenarios	2030 Annual Prod (Bcf)	Cum prod thru 2050 (Tcf)
<u> </u>	1 Tod (BCI)	2030 (101)
\$3	883	43.7
\$4	929	45.1
\$6	1048	48.1
\$10	1106	51.0

Press

UT Press Release http://www.utexas.edu/news/2013/02/28/new-rigorous-assessment-of-shale-gas-reserves-forecasts-reliable-supply-from-barnett-shale-through-2030/

Gas Boom Projected to Grow for Decades

Russell Gold, Wall Street Journal Front Page, Feb. 28 http://online.wsj.com/article/SB10001424127887323293704578330700203397128.html

Texas Study Points To A Longer Natural Gas Boom

Wade Goodwynm, NPR All Things Considered http://www.npr.org/2013/02/28/173173548/texas-study-points-to-a-longer-natural-gas-boom

U.S. Barnett shale to pump natural gas to 2050

Reuters, Feb. 28

http://uk.reuters.com/article/2013/02/28/usa-natgas-barnett-idUKL1N0BSDKC20130228

Barnett Shale Output to Tumble Through 2030, Study Says

Bloomberg, Joe Carroll, Feb. 28

http://www.bloomberg.com/news/2013-02-28/barnett-shale-output-to-tumble-through-2030-study-says.html

Unconventional Reservoirs Environmental Implications

- Environmental
 - Traffic/noise/light
 - Land
 - Quakes
 - Water
 - NORM
 - Methane and Carbon

Unconventional Reservoirs Environmental Implications

- Environmental
 - Traffic/noise/light
 - Land
 - Quakes
 - Water
 - NORM
 - Methane and Carbon
- Security
 - Available
 - Affordable
 - Reliable

Not mutually exclusive!

Environmental Issues Regulatory Considerations

- 1. Mandatory baseline data
- 11. Cement all gas-producing zones
- **III.** Minimize fresh-water use on the front end
- IV. Full disclosure of chemicals
- v. Handle flowback and produced water
 - a. Treat and reuse
 - ы. Dispose: characterize for faults
- **VI. Minimize methane emissions**
- **VII. Minimize surface impact**

In the U.S. K is for...

...and the Economic implications are considerable

FracK

- Oil
- Natural gas
- Coal
- Nuclear energy
- Hydroelectricity
- Renewables

Source: EIA, 2012

Unconventional Reservoirs Economic Implications

- Balance of Trade
 - ✓ Exports: Natural gas, liquids, products
 - ✓ Imports: Oil
- Regulation and Planning
 - ✓ Infrastructure
 - ✓ Resources
 - ✓ Permitting
- Emissions
- Energy Security

Outline

- A Look Back
- **The US Energy Mix**
- The Global Energy Mix
- Forward Steps

Global Oil Production

OECD Non-OECD

Global Oil Production

■ OPEC Non-OPEC FSU

Global Oil Production

Oil Consumption

BP Statistical Review of World Energy, CIA World Factbook, Census Bureaus, Marc Faber Limited, RJ Estimates From Raymond James and Associates, Inc., August 2, 2010

Oil Consumption

U.S. Bureau of Transportation Statistics, RJ Estimates, China Association of Automobile Manufacturers
From Raymond James and Associates, Inc., August 2, 2010

Oil Consumption

Long-Term Oil Supply Resources and Production

Global Natural Gas Production

Global Natural Gas Production

Natural Gas Supply Resources and Cost

Natural Gas Supply Resources and Cost

Global Comparison

Global Comparison

Source: BP Statistical Review 2012

■ Total Africa

Global Shale Oil and Gas Basins

Figure 1. Man of basins with assessed shale oil and shale gas formations, as of May 2013

Source: United States basins from U.S. Energy Information Administration and United States Geological Survey; other basins from ARI based on data from various published studies.

Global Shale Oil and Gas Basins

Figure 1. Map of basins with assessed shale oil and shale gas formations, as of May 2013

Source: United States basins from U.S. Energy Information Administration and United States Geological Survey; other basins from ARI based on data from various published studies.

"K" is for...

- Oil
- Natural gas
- Coal
- Nuclear energy
- Hydroelectricity
- Renewables

China

Outline

- A Look Back
- **The US Energy Mix**
- The Global Energy Mix
- Forward Steps

US Electricity Generation by Fuel, All Sectors

The 3E Waltz

Environment

Energy

Economy

The 3E Waltz

Environment

Energy

Economy

Leaving our Corners

Government

Academia/NGO

Industry

Roles for the Independent

- Evaluate low-cost, targeted operations in existing shale gas plays
- Consider shallow-water offshore lease acquisition opportunities
- Pioneer development of other organicrich, tight rock plays (e.g. limestone)
- Develop international opportunities in lower-political risk countries
- Be the bridge between local, state and federal regulators and policy makers

Larger Trends

- The scale of energy demand is enormous
- Oil and gas are a part of the future energy mix and shale will play a growing role
- Above-ground challenges are real and rigorous operational practices are key
- Energy security—affordable, available, reliable, sustainable—will drive the future energy mix