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Abstract

Tectonics is very important to the depositional record preserved in nonmarine sedimentary basins. The episodic syndepositional faulting and
the related paleogeomorphology control both the formation of sequence boundaries and the stratal stacking patterns. In this study, the sequence
architectures, depositional systems and controls on sediment infill of the Lower Cretaceous in Ta’nan Depression, Tamtsag Basin in Mongolia
were investigated using seismic profiles, cores and well logs.

Based on the identification of unconformities of different hierarchies, three second-order sequences and four third-order sequences are
identified in the Lower Cretaceous lacustrine rift-basin successions. According to the subsidence rate and the intensity of tectonic activity, three
types of lacustrine sequences, consisting of distinctive depositional systems, were distinguished: (1) simple half-graben sequences developed
during the initial rifting stage; (2) tectonic-rollover sequences developed in response to rapid and differential tectonic subsidence during the
climax -rifting stage; and (3) depression sequences formed during the late-rifting stage.

The sequence development is mainly controlled by tectonics and sediment supply. Due to the differential tectonic subsidence rate and sediment
supply, the accommodation/sediment supply ratio (A/S) varies greatly in both different tectonic positions and stages of rifting, resulting in a
wide variety of stratal stacking patterns.

Through episodic rifting and differential subsidence, various types of transfer zones and structural slope-break zones were formed, both of
which play significant roles in formation and distribution of different types of sequences and depositional systems within. Transfer zones
controlled the locations of sedimentary provenances, entry points of sedimentary material into the basin, and the resultant development of
depositional systems. The structural slope-break zones of Ta’nan Depression during the climax rifting stage of K1n would be subdivided into
four types from the steep slope to the gentle slope, they are: fault scarp zones, fault terrace zones, intrabasinal fault break zones and gentle
slope zones.
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Furthermore, three fault array patterns were identified according to their distribution on the structure map, which are "comb-like", "fork-like
and "parallel". The structural slope-break zones mainly influence the distribution of depositional systems and sand bodies, the sand bodies are
mainly accumulated at the lower part of tectonic slope-break zones, and the rift-interior sediment dispersal directions are consistent with the
strike of the slope-break zone.

Areas where the structural slope-break zone overlapped with transfer zones are sites for major drainage systems and the optimum locations of
fan deltas and sublacustrine fans. The sand bodies deposited here are favorable targets for the exploration of litho-stratigraphic traps in Ta’nan
Depression.
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1. Introduction

B Sequence models

flooding surfaces Maximum Flooding Surface

fluvial or estuarine
sandstones in incised valleys

coastal-plain sandstones
and mudstones
‘ shallow-marine sandstones

shell and slope mudstones

and thin sandstones Sequence Boundary
submarine-fan and levee-
channel sandstones

(Van Wagoner, et. al., 1988)

Presenter’s notes: In recent years, the fundamental principles of sequence stratigraphy have been applied to analyze the basin fills in various tectonic settings
to predict the distribution of depositional systems and sand bodies.



1. Introduction

B Controlling factors on sequence development
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1. Introduction

B Basin architectures
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1. Introduction
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2. Geological setting 2.1 Location
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2. Geological setting 2.2 Strata
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2. Geological setting 2.2 Strata

E |Sequ-| seismic| Lithol "

5| ence|reflecta " systems DT " alumn lithology

H 3 silt-fine sandstone
TEn braided river 1 with gray laminated
H braided delta i — mudstone

2 | su1 i -

Kld % | = massive gray
ES shallow 3 i mudstone CuU
H lacustrine i B with silt-fine
H { L sandstone

i

interbeded silt-
fine sandstone
and gray
mudstone

I PR VR ———
e

~
1
3
Nantun Formation
2
I PR E—

—T.— shallow-
deep lacustrine

mudstone with
conglomeratic
sandstone and
sandstone

fan-delta
Sublacustrine
fan,

é sQ2 FU
g ial
£ alluvial fan conglomerate
H . fan delta and pebbled
Klt 3 coarse grained
E sa1 sandstone
2
2




2. Geological setting 2.3 Tectonic evolution
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2. Geological setting

2.3 Tectonic evolution

Episodic faulting activities in syn-rift stage
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Presenter’s notes: The sequence architectures and depositional systems are different during individual episodes of fault movement, due to differential

tectonic subsidence rate and arrangement pattern of syndepositional faults in different tectonic position.
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3. Sequence models of syn-rift lacustrine basins

3.1 Identification of sequence boundary
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3. Sequence models of syn-rift lacustrine basins

3.2 Sequence classification and sequence models
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3. Sequence models of syn-rift lacustrine basins
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3. Sequence models of syn-rift lacustrine basins
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4. Tectonic Controls on distribution of depositional systems

and sand bodies in climax rifting stage (SQ3)
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4. Tectonic Controls on distribution of depositional systems

and sand bodies in climax rifting stage (SQ3)

4.1 Transfer zones control the enter point of sediment influx

4.2 Structural slope-break zones control the distribution of

depositional systems and sand bodies




4.1 Transfer zones
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4.1 Transfer zones
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(1) Synthetic approaching transfer zone—transverse uplift
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(1) Synthetic approaching transfer zone—transverse uplift
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(1) Synthetic approaching transfer zone—transverse uplift
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(2) Synthetic overlapping transfer zone——relay ramp
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(2) Synthetic overlapping transfer zone——relay ramp
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4.2 Structural slope-break zones control the distribution of
depositional systems and sand bodies




4.2 Structural slope-break zones control the distribution of

depositional systems and sand bodies
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4.2 Structural slope-break zones control the distribution of

depositional systems and sand bodies

(1) Fault scarp zone and fan-delta
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4.2 Structural slope-break zones control the distribution of

depositional systems and sand bodies

(2) Fault terrace zone and fan-delta & sublacustrine fans
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4.2 Structural slope-break zones control the distribution of

depositional systems and sand bodies

(3) Intralbasinal slope break zone and sublacustrine fans
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4.2 Structural slope-break zones control the distribution of

depositional systems and sand bodies

(4) Gentle slope zone and braided river-delta
»Located in western slope area, antithetic fault terrace formed by F5,F6,and F7

»Sediment mainly deposited as braided delta in the slope margin




4.4 Tectonic controls on depositional systems and sand bodies in
the climax rifting stage (SQ3)
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5. Conclusions

(1) The Lower Cretaceous in Tanan Depression could be subdivided
into three 2"-order sequences and four 3™-order sequences.




5. Conclusions

(2) Three types of lacustrine sequences, consisting of distinctive
depositional systems, was distinguished.
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5. Conclusions

(3) Transverse uplift transfer zone and relay ramp transfer zone were
identified, and they controlled the entry points for sediments into
the basin.
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5. Conclusions

(4) Four types of structural slope-break zones were identified. The
structural slope-break zones mainly influenced the distribution of
depositional systems and sand bodies.




