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Abstract 

 

The capability to store CO2 in subsurface geologic reservoirs is a proposed technique that will reduce the amount of human-generated CO2, a 

greenhouse gas, from accumulating in the atmosphere. By examining bedrock sites where evidence for ancient carbonate deposition, and where 

we see natural CO2 leaks, we can understand how fluid flow in the subsurface behaves in relation to faults and fractures. Understanding fluid 

flow in a natural system improves our understanding of risks involved in the storage of CO2 in subsurface reservoirs. We focus on two different 

outcrops of Mesozoic rocks associated with active CO2 leaks. The field locality for this work is in the Salt Wash Graben SE Utah, adjacent to 

the Ten-Mile fault, a normal fault with hundreds of meters of offset. Field observations at this location allow an understanding of crosscutting 

relationships of laterally extensive carbonate veins and travertine deposits associated with the Salt Wash fault zone. Maps of crosscutting 

relationships in outcrop are used to understand timing of mineralization along with petrographic analysis of host rock and vein mineralization 

of calcite veins to understand relationships between host rock and mineralization. Both stable carbon and oxygen isotope analysis are used to 

understand changes in the fluid reservoir composition. Preliminary stable carbon isotope analyses give δ
13

C values between 3.9-6.0 per mil; 

variations may indicate change in fluid source, relative timing of mineralization, and depth of mineralization. Stable carbon isotope analysis is 

important because they serve as geochemical markers related to source fluids. 
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Introduction
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Figure 1. 

Key Results:

Trace Element Geochemistry
Mg/Ca:
 Increase in Mg/Ca ratio away from source

 -- Aragonite does not take much Mg into its crystal lattice. 
 -- Enrichment in Mg due to aragonite precipitation may 

      for sample 2/9

Na/Ca:

Stable Oxygen and Carbon Isotopes

Petrophysical Analysis:
 Analyze samples which have undergone 

 geochemical analysis, to understand if geochemical 
 signatures are represented in mineral textures.

Preliminary Conclusions:

the host rock. The geochemical data preserves a record rapid 

Implications:
These results suggest that in a CCS system, if there is a rapid 

volumes. This rapid change in chemistry and stable isotope 
composition will complicate 'leak detection' strategies and 

and transport modeling aimed at predicting impacts to water 
quality.

Horne, Elizabeth A., Evans, James P., Newell, Dennis, Kampman, Niko, Nelson, Steven, and Petrie, Elizabeth S.

Fluid pathways preserved in
CaCO3 veins

Ten Mile Geyser, Salt Wash Graben. 

 Covariation in isotopic spikes and depressions, suggests

 Correlation between elemental signatures, vein textures and 
 isotopic amounts (Charts 5&6)

    precipitation

Future Work 

         1mm at

Photomicrograph
Horizontal vein intersects vertical, viewed in thin 

which could be linked to rate of crystalization or 

Methods
 Field mapping and hand sample collection

 of a laterally continuous aragonite vein 
 Geochemical Analyses

 -- Stable carbon and oxygen isotopes
 -- Elemental analysis
    -- X-Ray Diffraction
 -- Petrography         

 

We evaluate the geochemistry and mineralogy
of aragonite and calcite veins associated with
this natural system of CO

2
 to understand

the potential risks involved in the storage 
of CO

2
 in subsurface reservoirs.

 Decrease in Na/Ca away from the source.
 Salts precipitating out of solution, causing a freshening 

 of water away from source.
 Inverse relationship to Mg/Ca (Charts 3&4) 

There are several exposed vein systems within 
Salt Wash Graben that are created by CO

2
 

charged groundwater leaking from deeper
subsurface reservoirs. These vein systems are 
up to hundreds of thousands of years old and 

Results for 
Samples 
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Calcite                                                                                                                                   Aragonite
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Outcrop view
of vein sampled
in this geochemical
investigation
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Relating Elemental and Stable Isotopic 
Signatures to Aragonite

Texture and Growth
Sample 2/1

Chart 6  
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Relating Elemental and Stable Isotopic Signatures
to Aragonite Texture and Growth  

Sample 2/4
Chart 5
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δ13C and δ18O Cross-Plot 
Chart 2
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Illustration of Studied Vein

Chart 1: Carbon and oxygen isotope 
values along the length of vein. 

sample grouping record changes in

thickness. 

Sample Distance from Projected Source (cm)

Chart 2: Linear covariation between 
carbon and oxygen isotope values.

same processes, and are interpreted
to come from the same reservoir. 
 
Chart 3 & 4: Inverse relationship

evolving away from source.

Stable Carbon and Oxygen Isotope Values Along Length of Vein
Chart 1

Proposed Source

Fluxes in both Mg 
and C&O isotopes
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Slope = 0.64

Slope = -0.69

Slope = 2.30

Degassing and CaCO 3
 precipitationD

eg
as

sin
g

CaCO
3  precipitation

Rayleigh distillation modelling from 
Kampman et al., 2012.  The similarity of 
slope of our data and that of Kampman
et al., 2012 indicate that the veins
formed by repeated degassing and 
calcite preciptation. 
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