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Abstract

Pebbly fluvio-deltaic sandstones of the Brimham Grit (Kinderscoutian, northern England) form a complex array of Millstone Grit tor outcrops,
which enable 3-D lithofacies architecture to be determined in detail whereby relationships between adjacent sand-bodies representing a range
of channel, barform, dune and sheet-like elements can be used to reconstruct the flow behavior of a braided channel network.

Although the depositional paleoenvironment was supplied with sediment delivered from a range of provenances, the dominant supply was from
eroded remnants of Scottish and Norwegian Caledonian Mountains located ~450 and ~950 km towards the north and northeast, respectively.
Previous studies suggest that the system evolved from a shelf-edge- to slope-ramp delta, which ultimately delivered sediment to a series of
submarine fans developing in the deep-water depocenter of the Craven Basin.

A detailed depositional model depicting the fluvial processes responsible for generating the preserved stratigraphic architecture has been
developed through high-resolution architectural analysis utilizing 1D sedimentary logs, 2-D architectural panels, pseudo-3-D fence diagrams
and paleocurrent rose diagrams. Sedimentary lithofacies include trough- and planar cross-bedded sets, compound co-sets of cross-strata, planar-
bedded sandstones and gravel beds, collectively organized to define a variety of architectural elements including single-story, multilateral- and
multi-story channel elements, downstream- and laterally-accreting macroforms. Architectural elements are typified internally by distinctive
lithofacies arrangements with highly variable paleocurrent distributions that are indicative of barforms that systematically changed from lateral
to downstream accretion, with accumulation occurring in a poorly-confined network of fluvial channels allied with major sandy barforms,
indicative of a frequently avulsing braided fluvial system in an upper-delta plain setting. The presence of plant fossils (e.g. calamites stem
remnants) implies local swamp-like conditions adjacent to active channel belts and a degree of channel-bank stability.

Data from this study are contributing to a broader research program investigating the linkage of fluvio-deltaic successions from shelf-edge
deltas to slope and submarine-fan successions, with a focus on the influence of basin morphology on sediment delivery mechanisms in the
Craven, South Pennine and North Staffordshire Basins of the UK.
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Reconstruction of channel and barform architecture in a Pennsylvanian fluvio-deltaic succession:

Brimham Grit, northern England

UNIVERSITY OF LEEDS

Sedimentary Facies examples - Brimham Rocks

Li and Facies

« Facies are classified objectively based on colour, texture, i y
&

and bedding™

Temporal and spatial variations give rise to facies associations due to changes in the
palaeoenvironment™
Facies are allocated a unique code reflecting lithology type and defining characteristics based on a
modified and extended version of Miall's (2010) classification scheme, for example;
"Stsx" represents "Small-scale Trough Cross-Bedding; <1.5 metre trough lengths”
Bounding surfaces - based on Miall's (2010) hierarchy of depositional units in alluvial deposits,
facilitate discrimination between ic or allocyclic to ascertain how each were
likely responsible for i i and preservation of archi elements®
References to cross-bedding size, trough shape and dune facies observations, for example, are
relative to outcrops at Brimham Rocks, not to general literature
Colour coded schematic facies illustrations depict subject faci
i re with main sedil y g
Depicted facies highlight variable foreset, set, coset and bed morphology:
-variable palaeoflow direction, strength and amount of sediment influx
-2-D (i.e. straight- d)and 3-D (i.e. usl: ted) dune migration
b- | climbing represer of bedforms ata low angle of climb
-active and variable braided fluvial system influenced by flood events
Southerly and westerly palaeocurrents imply northern and southern sediment provenance

nd adjacent:
|

directio

Colour-coded Facies

#2510 10% smallpabble contont.

Medum-scale trough cross-bodding: 1.5

crsm TG o onanangeincined oreses g
s ol &) et
5521 1o very coarse grained.

<i5m Low. 1o g angncned orses ooy

St o ongi, oo o vy G s
grained + ~5- o 10% granle content 15554] megium- to very coarse graine

[Stx | Smillcae rougn coss-bedang: < 15 Low- 10 g anencnad oresets orming
S
Sen | rouh sk Ty

coarse graned

Y

soft sediment
Toreset

Siuctures relainad.

bedding:

Low- to medium-angle-inclined foresets; 52.0 m
hik giant cross-borling; medium. 0 granular
grained + =5+t 10% small pebble content

Facies Stsx-peb - Small-scale (< 1.5 m) trough cross-bedding containing ~5 - 10% small pebble inclusions

View towards 300°

K:

OF

Grnsan i —
3 o o B

Sotog 8 Testre Lowngh seny; st ot srng

aceretion of prograding sand
dunes over a migrating mid-
channel bar (macroform).

Set cknsss “om.028m erhvbrioe)

@ S ® e

—. Dot st mactom

Facies SI-mtx >0.40- <2.0 m - Low- to

View towards 109°

coour [T Srar st e ot Epeode dsooston o s (Sl-mtx >0,40- <2.0 m) >3 m
long tabular cross-bedding -
episodic_deposition from

suspension represent sand
june i

Sortng & T [ ———

; >0.40- <2.0 m thick tabular

Sinuously-crested 3-D_mesoform
forming along the crestfront of a
migrating channel bar (macroform) -
representing downstream-acretion

‘Sub-horizontal 3rd-order bounding surfaces
define erosional coset and bed boundaries -

indicating a shiftin palaeofiow direction

020-
‘o very coarso grained.
| Modium-scal trough coss-bedding: 1.5 - L
m ¢ medium- o very
grained. coarsa grained,
L ol
rough length; 3
Sifx | Large-scalo tough cross-bedding: > 3.0 m SO0 | potptenncn b < o content
7" | rough lengihs: cosrse- to granuiar gained: | <pstg| Penbleeh bec: <25% petibla contant
Highangle-inclined foroses, panr - =
sha <
tabular
P | coarse grained. [
Low to mecium-angle-incinsd foresets; [l
S| <0.40 m thic tabular ross-bedding; medum- Sip | Fossiised plantremnans
el
to ranular graines J
S sediment deformaion (iquefaction
B 854 | Softsecimen deformation (iquefacton)

Structurless bed.

laminations; dofted nes signfy
undsfinedinfered bedding laminations.
Planar cross-bedding: doted fnes signity
undsfinedinforrd pianar foresels.

rough cross bedding: dotted lnes signify
indefiednferred rough oresels.

] rwonacas
[RE——

—_— 3r0.Order bounding surface,
——— Reactivation surface,

——— Channel base.
e Petible lag

Low- to_ high-angle-inciined foresets indicate
varying palaeofiow and sediment input,
generates compound cosets of small-scale
trough cross-bedding; set and coset boundaries
form 1stand 2nd-order bounding surfaces,

North

General palaeoflow
direction towards
the south

from

Planar cross-bedding foresets

ofcoarser grained
tractionload
jown ee face.

=

‘Gradual coarsening-up succession across.
unit boundary: indicates increasing
palaeofiow and reactivation surface
forming 1st-order surface;
indicates possible hiatus in sediment input

PR ssnses erannel i
Atk Smers Soytoon
Facies SI-mgx >2.0 m - Low- to i gle-inclined

Associated
Facies

stmxd

Smox
>20m

Stsx 1

Channel base

s ¥

oo

Key Facies Characteristics

i R Ee—

Soring & Tertre [ S———— g o

-bedding,
r" (macroform) associated
r ed

e OO SIS e ey e e o Channel or channel con-
SLENR gy B i ot fluence; oblique sand body

e "2 migration within a relatively

J— O domtar st s

Low- to medium-angled-inclined foresets forming bed of very large-scale planar
with evidence for Foresets

—

indicate sub-critical cimbing and net westerly dune migration. Episodic
deposition from suspension denotes intermittent avalanches of

rm implies hig
level of sediment input and palacofiow within a relatively
deep and unrestricted channel; over a short time.

coarser traction load down lee face.

scales. Oblique downstream-accretion of

may have initally formed
as a fingu
transverse bar

Basal unit (not
shown) possesses.
awesterly palacofiow

Sub-horizontal 3rd-order bounding
surface defining erosional boundary;
shift in palaeofiow direction and
direction of downstream accretion
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Low- to high-angle-inclined foresets generated
by large-scale straight crested 2-

imply variable palaeocurrent and sediment infiux
associated with sand dune

relatively wide and unrestricted fluvial system

migration within a

Arrows indicate general

Basal unit (not shown)
possesses a mainly
southerly palacofiow

Arows indicate general
palacoflow direction

Set boundaries form 1st-
orderbounding surfaces

Finely laminated_horizontal planar
bedding - indicative of "
regime’; relatively shallow channel
and fast planar palaeoflow. Bedding
truncated by easterly-dipping channel

Facies Sl-hfhs <0.20 m - Low- to high-angle-inclined foresets <0.20 m thick horizontal sets

Associated ! View towards 15°
Facies

sty fow
Grocton
T

s <3
Southerly.
flow

direction

\nformation

(Sihfhs) Coset of thin planar
foresets indicate subcritical
imbing; low sediment input
unit

Sortng & Tore [ ——)

S Thomn o i i o implies sub-crtical limbing;
[ e increased flow and sediment | alsodemonstate sub-crtcl lmbing.
@ o input. both units imply net | relatively fast palacofiow and net

Nercars B o ] e

Arrows indicate general westerly

<0.20 m thick sub-horizontal sets
and southerly palaeofiow regimes.

fed by 1st- order surfaces
contain tightly packed foresets

h asymptotic base; foresets
record sub-critical climbing,
increasing sediment input,
relatively fast palaeofiow and net
‘westerly dune migration

North

Tightly packed low- 1o medium-angled
foresets define predominantly small-
scale sinuously (3-D), orstraight (2-D),
crested trough, or planar, cross-
bedding (mesoform) contained within
<0.20m thick horizontal sets; foresets.
Reactivation surface and 1st order
bounding surface implies sediment

unes migrating over a
channel bar (downstream-

[¢] d forsets, larg

Facies Sha-ptx -

View towards 300°

Koy Facies Charactaristics

e oot v oty a0s_ tresrs ot %0 (Sharptx) >3 m large-scale
G e ——— i SHR SLGTUAS  planar cross-bedding rep-

Soring 8 T [ ——— fakzgloy, eier e resenting the migration of a
i  Tour S — e uor T o
Setmhciness PR Ter—— @y s b (8 52 o2 channel bar; channel fill and
ps avulsion within a wide and

e psecion ot (@ pontomsvonts o (D) S relatively doop unrestricted

Facies StIx.1 - Larg

le trough

Soring 8 Towurs

[—

hiatus and/or palacofiow variation

le planar tabular cross-bedding

Planar foresets generated by large-scale
straight crested 2-D mesoform migrating
over channel bar (macroform) representing
possible avulsion event within a relatively
wide and unrestricted fluvial system

Overlying unit of pooly defined
smale-scale trouth cross-bedding
forms an erosive contact with
underlying unit - northerly palaeo-
current provides further indication
offluctuating palaeflow

Southerty
palaeocurrent

North

Arrows indicate general palaeofiow
direction and give an indication of
the fluctuating palasocurrents

High-angle-planar (tabular) cross-bedding
truncates lower trough cross-bedding indicating
an erosive contact, sub-critical  climbing,
increased sediment influx, net dune migration

Facies Sl-hfss <0.20 m - Low- to high angled foresets <0.20 m thick sub-horizontal sets

Koy Facles Characteristics.

®

Interpretation

(Sl-hfss <0.20 m) Cross-
cutting tabular bed-sets

s R
B OERERE @ meram

O R OB ER

— @ Pt of expanded view for ks

@ o

channel compound bar
(macroform).

Facies Spb <25% - Pebble rich bed with ~15 - 25% pebble content

(Spb <25%) Pebble-rich bed
and poorly defined foresets

e e i, s (8) e o % 2 nfor rapid doposition ovar a

Ganze L — oSt

Soring 8 Toture [ —————]

Tightly packed low- to medium angled foresets
define small-scale

Arrows indicate a generally
southerty palaeofiow

3D mesoform dune migration d
crestfront (downstream-accretion - macroform)
within a relatively widelunrestricted
fluvial channel. 1st-order reactivation

2-3m
North

Sub-horizontal 3rd-order bounding
Surfaces define erosional coset
(2nd-order bounding surface) and

boundary implies a shift in
palaeoflow direction and direction
of downsiream-aceretion

Grain size component
1. Medium- 1o very coarse

3. Coarse- fo ver
to 10% granule content
Fining-up and coarsening-up
succession - indicates varying
palacocurrent strength and
sediment influx_rate, which

‘Southerly dipping foresets, 1st-order set boundary and 3rd-
order sub-horizontal cosetlbed boundary demonstrate a

Jimbi

View towards 109°

s ©

®:

emomcton e
TR (B) P gt

R e O L

Facies Spl/b - Planar horizontal laminations and/or bedding

Geanaize
S Thsss

Anchscurs Eamants

-

@

>3 m trough lengths

Foresets within trough cross-bedded
sets indicate sub-citical climbing,
net dune migration and change in
palaeofiow towards the west

3-4m

(Stix.1) >3 m wide large-scale

trough cross-bedding rep-

resenting migration of sandy
unes ov

bay

Grain size, low-angled foresets,
long shallow  trough_profile,
relative unit size and basal erosive
contact collectively imply a hi
level of sediment input and
relatively fast palacofiow

flow shift within a
rolatively
braided channel system.

o @ oo

Finty it ottt st
e o tetarg migaieg
T

View towards 285"

Densely packed low angle foresets.
generated by small-scale sinuously
crested trough cross-bedding (3.0
soform), denote sub-critical
climbing and net westerly sand
migration facilitated by
relatively fast palacofiow

North

Reactivation surface - 1st-

nding surface -
infers sediment hiatus
(Spiib) laminated beds, grain |  andor palacofiow variation
ck of mica indicate

in shallow channel and
fastpalacocurrent; erosive
channel rop-resents
possible _deepening and

southeriy dip, indicating “upper

Finely laminated horizontal planar bedding with slight possibly
plane bed regime’; rlatively shallow
channel and fast palaeofiow. Bedding is also truncated by easterly

Facies Ss-Ip-lag - Small- to large pebble lag

Color
Granezn
Sorig 8 Tesrs
Set Trckosss

Pebble-rich bed ~15 - 25% small- to
medium sized pebbles. Pebbly unit
suggests possible flood event wit
relatively high proportion of bed load
sediment conveyed by strong palaeofiow.
Poorly defined bedding is indicative of
rapid deposition over a short period of
time - migration of sandy bedform

2-5% small- tomedium
sized pebble content

Poorly defined horizontal
erosive bed contact boundary

2-5% small- to medium
sized pebble content

4-5m

North

Poorly- to well defined low- to medium angled

Arrows indicate a generally 0
foresets defining predominantly arge- to mecium

- someaim nt within a deop and
oo st Crovs et o s e b 50 unrestricted fluvial

channel. Sandy bedform
L= migration and channel fil.

cale planar cross-bedding (straight-crested 2-D
form) - foresets also demonstrate sub-

critical climbing and relatively fast palaeoflow with

netsouth-westerly dune migration

«

oy s o g st 2 5% st ot

Key Facies Characteristics

®

BTN @RI

®

Sonayosom,

-

S @R

Facies Ssd - Soft sediment deformation

Sorog & et
Faes ssosiatan

View towards 336°

[reSrem—
e o corsn s -~ 28 sl el
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Koy Facios Characteristics.

FER R @ e
g ety O RERR R
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bhpbilliton

scale trough cross-bedding (3-D mesoft

sub-ciitical climbing and net norih-north:

palacofiow

Small-tolarge pebble lags
and foresets represent
primary_and secondary
sedimentary structures,
respectively

(Ss-Ip-lag) Pebble lag at base
of poorly defined bed implies
rapid deposition (flood event)
over a relatively short period
f time; possible broad
channel scour andlor erosive
contact. Sandy bedform
migration and channel fil.

Structureless bed_inferring
relatively rapid and sudden

(softsediment deformation)

Presence of foresets above lower limit of
deformation suggests partial liquefaction
occurred: limited/localised grain instability
and water movement; preserving the more
general primary foreset structure.

Arows indicate a generally
westeriy palaeofiow

North

Limit of soft sediment
deformation contained
within the lower bed

Conocc;ﬁhillips

Poor- to well defined low- to medium angled
foresets defining predominantly small- medium-
om with

=5 - 10% pebble content). Foresets also imply
west

sand dune migration faciltated by relatively fast

5

V7

N\
%“‘v

>

T

! )

7
) el

#

Tightly packed foresets generated by
large-scale sinuously crested 3-
mesoform representa possible shiftin the
channels palacofiow within a relatively
wide and unrestricted fluvial system

Basal unit - southerly
palaeocurrent

Arrows indicate general palaeoflow
direction and give an indication of
the fluctuating palaeocurrent

Arows indicate general
palaeoflow direction

Set boundaries form 1st
orderbounding surfaces

Sub-horizontal trough cross-bedding
(small-scale) migrating westwards
erading into and climbing over underiying
planar bedding; sub-critcal climbing and
net westerly dune migration - low-angle-
inclined foresets imply fast palasofiow

Arrows indicate a general north-
westerly palacofiow and south-
easterly sediment provenance

Diplazimuth (08°-340°) of pebble lags
implies north-north-west palaeofiow and
South-south-east sediment provenance;
possible broad channel scours and/or
erosive contacts faciltated by flood event

Foresets demonstrate that the

Architectural Elements examples - Brimham Rocks

« Architectural elements are classified objectively based on Miall's (2010) definitiol

- y description and interpretation

size of depositional system is < than channel fill and > individual facies

« Architectural element codes are assigned on basis of element's geometry, bounding
surfaces, scale, lithology and palaeocurrent characteristics'
+ References to cross-bedding size, trough shape and dune element observations, for

3

« Colour coded element illustrations depict subject elements and adjacent facies

associations - annotated with sedimentary features

« Depicted elements show variable foreset, set, coset, bed morphology. Inferring:

variable palaeoflow direction, strength and sediment input, 2-D and 3-D straight and

sinuously-crested dune migration in a braided fluvial system guided by flood events

of planar cross-bedding; foresets
from lower unit appear to be siightly
sigmoidal, probably due o the onset
of deformation

Undulatory bed contacts
imply erosive contact an
or soft sediment deforma-

sinkintounder-lying bed

Softsediment deformation (liquefaction) - poorly
defined flame and disk-like structures; remnants.
of original foresets are as distinct
idges; foresets and flame structures form
primary and secondary sedimentary structures,
respectively

dngou gSoly!

Saudi Aramco

example, are relative to outcrops at Brimham Rocks, not to general literature . ly imply a northern and southern sediment provenance
P Facies o
Element | Code Geometry Description £ Interpretation
+ Coarse- o very granular sandstone with ~5- o 10% small + Implies southerly migration of small sinuously crested
pebble content dunes (3-D mesoform) forming along the crestfront of
~ View towards 109° « Primary sedimentary structures include i i (macroform;
trough cross-bedded sets and cosets forming secondary + Possible indication of limited sediment input into
structures shallow channel with turbulent flow
Doy + Sharp horizontal- to sub-horizontal 3rd-order bounding + Pebble content implies relatively high palacofiow
Secretion | DA1 surface Stsxpeb strength
+ Varying bed thickness from ~0.5 m- to 1.0 m - total + Setand cosetboundaries (1stand 2nd-order bounding
succession~2.25m surfaces) indicate minor localised erosion,
depositional hiatus and/or palaeofiow fluctuation
3rd-order bounding surface + 3rd-order bounding surfaces imply change in
the macroform
+ Implies initial south-westerly migration of medium- fo
View towards 108° + ~0.35m thick bed; primary sedimentary structures, cross- long sinuously-crested dunes (3-D mesoform), along
cutting trough cross-bedding (medium - long shallow the crestffront of a large migrating channel bar
wavelength); sharp relatively horizontal erosive basal (macroform)
contact + Alteringtoi i

+ ~0.80 m thick bed; primary sedimentary structures, cross- or sinuously crested dunes (2-D or 3-D mesoform),
cutting trough cross-bedding (long shallow wavelength): along the crest/front of a migrating channel bar
reactivation surface forming secondary structure; shar | gymy (macroform;

Downstream- sub-horizontal erosive basal contact St |* Migration within a comparatively unconfined fluvial
accretion | pA2 + ~1.50 m thick bed; primary sedimentary structures -low-| g jc: channel with decreasing sediment input, channel

(Transitional) to medium angle foresets forming <0.20 m sets; possible | 2950 depth and increasing palaeoflow
reactivation surfaces forming secondary _structures; ; « Transition towards downstream-accretion and
P Sub- i migration of channel bar (macroform); reactivation
st-order indication
of hiatus in sediment input and/or change in

L palaeoflow direction
arcorder beunding surface + 3rd-order bounding surface imply change in
palacofiow direction and cross-cutting erosional
surface within macroform
+ Coarsening-up_sequence - medium- to granular| . ration of da.
View towards 109° (2-D mesoform), altering to westerly migration of

. X ick; primary ructures, similar sized dune
high-angle-inclined planar cross-bedding; sharp erosive + Increasing palaeofiow facilltates process of episodic
basal contact Sharpix deposition from suspension, intermittent avalanches

ey + Trough cross-bedding; tightly packed foresets; long|  “gpry f coarser
o S8 ive hori Stmix |+ Shifing palaeofiow direction and dune extent imply
lower bed and gradual contact with upper bed b position within shifting and unconfined deep fluvial

« Tabular cross-bedding; poorly defined foresets; long| ~ - channel with relatively high sediment input and overall
shallow wavelength with episodic deposition from increasing palaeoflow strength
suspension; reactivation surface forming secondary + Reactivation surface forming 1st-order bounding
structure; sharp erosive horizontal contact, pper bed and surface, indication of hiatus in sediment input and/or

+ Coarsening-up sequence - medium- (o granular sand- + Planar laminated beds (2-D mesoform) superseded

. stone~5-1010% small pebbles; sequence from base: and eroded by westerly migrating small-scale
pleiiar a2 « Varying bed thickness from ~0.10- to 0.80 m; primary sinuously-crested dunes (3-D mesoform), forming
sedimentary structures, ~2- to 4 mm thick (planar) channel floor and climbing trough cross-bedded sets.
Iaminations forming ~10- to 30 mm thick beds; sharp (possible 5th and 1st-order bounding surfaces)
gradual horizontal”contact, underlying bed and sub- + Channel deepening faciltates formation of westerly
horizontal erosive contact with overlying bed migrating planar straight crested low- to medium-
+ Varying bed thickness from ~0.60- to 1.0 m; primary angle-inclined very-large-scale cross-bedded
s g5 imentary . small-scale sub-h i bedforms, “alternate bar” (2-D macroform)
Bounding cutting trough cross-bedding forming poorly defined|  Spib |+ Implies deposition within deepiwide channel with high
e Sl Coreon <0.20 m thick sets; sharp sub-horizontal erosive contact|  Stsx.1 planar flow and sediment influx rate, bed load
with under-and overlying beds Slmgx>2.0m | component highlighted by intermittent avalanches of
Istorder + ~3.50 mthick bed; primary sedimentary structures, planar | Stmx.1 coarser grained traction load down foreset lee face
Climbing trough I dium-angl ing, 3rd-order (episodic deposition from suspension)
o cross-bedding sets | - bounding surface; episodic deposition from suspension + 3rd-order bounding surface implies change in palaco-
forming secor tures; sharp sub-horizontal flow direction and cross-cutting erosional surface
contact with underlying bed and irregular i
with overlying bed + Succession capped by medium-scale sinuously-
Sth-order + ~1.0 m thick bed; primary sedimentary structures, crested dunes (3-D mesoform), implies flow regime
Channel floor alteration 1o more turbulent flow associated with
sharp regular erosive contact with underlying bed shallower channel and overall channel fil sequence;
sandy bedform - "altemate bar"- sandy bedform

+ Coarsening-up sequence - medium- {0 granular sand- + Initial westerly migrating small-scale dunes (3-D

. stone~5- 0 10% small pebbles; sequence from base: rm) form channel floor deposit and climbing

W SE « Varying bed thickness from ~0.60- to 1.0 m; primary trough cross-bedding sets (possible 5th and 1st-order
I le planar 3

cross-bedding forming | cutting trough cross-bedding; poorly defined, <0.20 m + Subsequent channel deepening faciitates formation

“alternate bar” thick sets, sharp sub-horizontal erosive contact with of westerly migrating planar straight-crested low- to

under-and overiying beds medium-angle-inclined very-large-scale cross-

+ ~3.50 mthick bed; primary sedimentary structures, planar bedded bedforms, "alternate bar” (2-D macroform)
low- to medium-angle-inclined cross-bedding; 3rd-order + Implies deposition within a deepiwide channel with

3rd-order bounding surface and episodic deposition from suspen- high planar flow and sediment influx rate, bed load

Downstream- Boundmg sion form secondary siructures; sharp sub-horizontal | _ Stsx.1 component highlighted by intermittent avalanches of

accretion | DA3 | guface contact with underlying bed and irregular erosive contact | Sk-mgx >2.0m | coarser grained traction load down foreset lee face
(Oblique) ~ with overlying bed Stmx.1 (episodic deposition from suspension)

+ ~1.0 m thick bed; primary sedimentary structures, + 3rd-order bounding surface implies change in palaeo-
mex ss-cutting trough cross-bedding; sharp flow direction and cross-cuting erosional surface
irregular erosive contact with underlying bed withinmacroform

+ Succession capped by medium-scale sinuously-
1st-order crested dunes (3-D mesoform), - indicating alteration
Climbing trough in flow regime to more turbulent flow associated with
e cross-bedding sets shallower channel and overall channel il
e + "Altemate bar" possibly attached, and migrating
obliquely to, channel bank, mid-channel or channel
confluence location

s im- 1o granular sandstone with coarsening-up and ~Initial south-south-westerly downstream migrafion of
fining-up sequences - sequence from base: planar cross-bedded sets (2-D mesoform) are.

+ ~1.10 m thick bed, primary sedimentary structures, low-

e angle-inclined foresets forming <0.20 m thick planar trough cross-bedded sets (3-D mesoform), migrating
cross-bedded horizontal sets; sharp sub-horizontal towards southeast and forming sub-horizontal 3rd-
Sandy bedform marks a distinct change in palaoflow | erosive contactwith overlying be order bounding surface

25, and transition from lateral-accrefion towards channel fil |+ Varying bed thickness from ~1.0- to 2.0 m; primary + Further sequence of southerly migrating planar and
~= sedimentary structures, low-angle-inclined foresets trough cross-bedded sets with sub-horizontal 3rd-
forming m thick small-scale trough cross-bedded order bounding surfaces are superseded an
sub-horizontal sets with oblique foresets, coarse grains truncated by the south-easterly migration of relatively

define base of various sets; sharp sub-horizontal erosive | Sihfhs <0.20 m|  large straight crested dunes (2-D mesoform)
contactwith upper-and underlying beds Siss-of |+ Migration within a comparatively unconfined fluvial
Lateral- | + Varying bed thickness from ~1.10- to 0.40 m; primary | Skhfss <0.20 m | channel with varying palaeofiow; transition from inital
accretion sedimentary structures, low-angle-inclined foresets Stsx lateral-accretion of macroform (LA) towards migration

forming <0.20 m thick planar cross-bedded sub-horizontal

sets; sharp sub-hori d

underlying beds

~1.0m thick bed; primary sedimentary structures, low-

angle-inclined foresets forming <0.20 m thick trough
sets; sharp -

3rd-order
bounding surfaces.

WV,

TULLOW

(1778

~0.5 m thick bed; primary sedimentary structures,
medium-angle-inclined foresets forming planar tabular
cross-bedding; coarse grains define base of various
foresets; sharp horizontal erosive contact with under- and
overlying beds

¥’ woodside

Slmix >0.40 -

of large straight crested dunes (2-D mesoform) and
channel il

3rd-order bounding surfaces imply change in
palaeoflow direction and cross-cutting erosional
surface within macroform

Foresets and sets with coarser grain component
defining base, imply episodic deposition from
suspension
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Architectural Panel examples - Brimham Rocks

Panel A - View towards 060°

Panel C - View towards 321°
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Panel G - View towards 300°

Metres

Images and related Architectural Panels - Brimham Rocks

« Images display the study area’s fragmented nature and potential for
detailed 3-D examination

« Red arrows indicate the position and outlook of the expanded view in
relation to the aerial image™

« Yellow arrows indicate corresponding position between expanded view
and architectural panel

« Panels are colour-coded in line with the sedimentary facies scheme to
highlight facies associations

Colour-coded facies scheme and symbol key

Facies Scheme
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Palaeocurrent Data related to Architectural Panels

+ Rose diagrams portray a variety of palaeocurrent (azimuth) data

obtained from architectural panelsA- H

The variable palaeocurrent data is indicative of barforms undertaking a

combination of both lateral and downstream accretion

Lower panel sections are predominantly associated with southerly
ind channel bar migrati

Upper panel sections are predominantly associated with westerly

palaeocurrents and a relatively higher proportion of sand-body deposits

Palaeocurrents imply that Lower Brimham Grit deposits are associated

with a highly variable and fluctuating non-confined fluvial system

Rose diagrams depict data derived from both direct measurements and

inferred from foreset apparent dips and bed contact measurements

Panel A N Defined Foreset Data Panel B N Defined Foreset Data

Resultant: 207

dov: 53
Largest Freq.: 17% Largest Freq.: 14%
Total Data:18 Total Data:14.
Inferred Forese Data
Resutant: 210

34
Largest Freq.: 33%
Tolal Data: 3

Bed Contact Data
Resultant: 180

ng. dev.

Largest Freq.: 100%
Tolal Data:t

Defined Foreset Dal Defined Foreset Data
Resultant. 251 Resuitant: 300
Ang. dov.: 3 n

Largest Freq.: 25%
Total Data: 20
Inferred F

Resultant 241

Largest Freq.: 33%
Total Data: 9
inferred Foresst Dat
Resultant: 14

Largest Freq.: 67%

v 0
Largest Freq.: 100%
1 Total Data: &

Total Data:

Bed Contact Data C .
Resultant: 265
An

Resultant. 167
ov. dev.: 3

Largest Freq.: 100% Largest Freq.: 50%

Total Data: 1 Total Data: 2

fined

Resultant: 164

Ang. dov: 14

Largest Freq.: 40%

Total Data: 5

Defined Foreset Data Inforred Foreset Data

Resultant: 205

Largest Freq.: 27%
Tolal Data: 11

AREVA

Outcrop Interpretation

« 2-D image taken from a photogrammetry model® created from outcrop section highlighted by PointA (see aerial view
image of Architectural Panel section)
The sedimentary log is colour-coded in line with the sedimentary facies scheme to highlight facies associations

Depositional Model - Brimham Rocks

« Schematic depositional model to account for the distinct variation in the palaeoflow between the
basal and upper section of the succession featured in the Outcrop Interpretation section
« The model consists of two interpretations (pre- and post-flood events) which imply that the

Basal deposits consists mainly of low-angle-inclined foresets forming <0.20 m thick horizontal and sub-t

al was influenced by two distinct flow regimes

sets, which rep asoutherly migrating channel bar, tion with superimposed lateral- ti « Eachinterp ion is with salient points and an expanded image to provide an example
. flood event facilif d dun ition, adj o ) and channel incision of the possible associated facies
Further flood events generate larger sand dunes prior to re-establishment of predominantly lo le-incli « D and lateral tion towards the base of the succession are related to the migration of

foresets forming <0.20 m thick horizontal and sub-horizontal sets, which represent a westerly migrating channel bar,
et & e e

+ Uppermost deposits are dominated by medium-scale sand dunes, indicating amplified palaeoflow and sediment input
Overall the section represents a large fluvial channel dominated by migrating channel bars, during periods of relatively
low palaeoflow and sediment input; in contrast, small- to medium-scale sand dunes dominate during periods of
relatively high palaeoflow and sedimentinput (flood events), facilitating palaeoflow adjustment and channel incision

2-D image taken from photogrammetry model

Line of sedimentary log (View towards 320°)
~13.5m high -

Point A on aerial view

Defined Foreset Data
Resultant: 257

Largest Freq.: 24%

Channel bed
Total Data: 21

Metres

Point of palaeoflow
adjustment from a mainly
southerly to a mainly

S
3 S ‘westerly palaeofiow
&\\\\

Resultant: 245

Ang. dev.: 35
Largest Freq.: 25%
Total Data: 4

channel barforms associated with southerly palaeoflows and probably relatively low- to medium
rates of sedimentinput
« In contrast, upper sections are related to westerly

. ition of .
tion, linked to the migration of channel barforms.
ithi

sand-bodies and either downstream or lateral accre
« Uppermost deposits are also probably i wil and sedimentinput
Depositional Model: Pre-flood event
Arrows indicate a predominantly Low- to high-angled foresets indicate varying
southerly palaeofiow palaeofiow and sediment input, generating

compound cosets of small-scale trough
cross-bedding; set and coset boundaries
Sinuously-crested 3-D mesoform form 1stand 2nd-order bounding surfaces

forming along the crestfront of a
migrating channel bar (megaform) -
representing downstream-aceretion

Sub-horizontal 3rd-order bounding
surfaces define erosional coset and
bed boundaries indicating a shift in
palaeoflow direction

Example of possible location for the deposition of small-scale (<1.5 m) Small- to medium-scale trough- cross-bedding

ling wi 1 i peb) forms internal structure of transient channel bars
(Downstream-accretion (DA), macroform); highly
susceptible to erosion and reworking facilitated

The d-bodies probably rep: ion during and in the immediate aftermath of flood

events which may have also facilitated channel avulsion and upward change in the palaeoflow

The relative size of the sand-bodies implies an increase in sediment influx

Absence of very-fine-grained sandstone, or mudstone deposits, typically indicative of floodplain
i ion, implies that th iti i i by sandy facies that

i bile ch | and barfc prone upper plain envil t

Although absence of cohesive and argillaceous sediments would render channel bars, islands and

banking liable to lateral and downstream erosion, fossilised plant remnants (e.g. Calamities and

Lepidodendron) suggest that, if not locally, more stable fluvial systems may prevail upstream

The model suggests that the palaeoenvironment, which varied in its palaeoflow direction, volume

and rate of sediment input, was associated with an active braided fluvial system susceptible to

avulsion during peak flood events at which time rates of sediment input also increased

Basal section of the succession is

dominated by a southerly palaeoflow
Presence of fossiised Calamities and and both downstream andlateral
Lepidodendron remnants suggests the accretion of migrating bar forms
likely establishment of vegetation along
the banks and in floodplain areas,
providing a degree of channel bank
stability

| Transient islands highly susceptible to
erosion and reworking faciltated by lack
of cohesive, argillaceous sediments

25 50
Metres

Abandoned channel
margins with lateral and
vertical amalgamated

by lack of cohesive, argillaceous sediments channel-fill
Depositional Model: Post-flood event
Upper section of the succession is Episodic decrease in channel Alternate bar possibly associated with Low- to medium-angle-inclined foresets
dominated by a westerly palaeoflow and depth caused by reduced water channel bank attachmentand oblique forming very-large-scale planar cross- Sub-horizontal 3rd-order bounding surface
both the deposition of substantial sand- levels facilitates formation of downstream-accretion. Large bars bedding, indicating sub-critical climbing and defining erosional boundary - shift in palaeofiow

bodies together with downstream and
lateral accretion of migrating bar forms

Abandoned channel due to the
migration of a transient bar
during a flood event. Channel
avulsion facilitates the
reworking of in-channel and
non-channelised sediments

inchannel confluence locations deep unrestricted channel with oblique

downstream-accretion (‘alternate bar’)

Finely laminated horizontal planar
bedding - indicating “upper plane bed
regime’; relatively shallow channel
and fast planar palaeofiow; bedding
truncated by easterly dipping channel

Small-scale (<0.20 m thick sets) sub-
horizontal trough cross-bedding (3-D

eroding into and climbing
over underlying planar bedding to form

Unconfined flow with high sediment  base - Sth-order bounding surface channel base, sub-critical climbing and
component generates distinct net westerly sand dune migration; low

large-scale planar- cross-bedding

Smalk- to medium-scale trough- (SB), dune migration and channel-

cross-bedding subjected to erosion

angle foresets alsoimply fast palaecfiow

and re-working during flood events e ancon

Conclusion

filldeposits within the primary Example of possible location for the deposition of very-

by flood events

Throughout the h i by the First Brimham Grit was supplied
delivered from a range of provenances, predominantly eroded remnants of the Caledonian Mountains that ay to the north

represent both laterally gand ting (bars), several examples of which can be shown
to have supported superimposed dunes. Palaeocurrent data are highly variable and are indicative of barforms that
inati fi I b

and northeast. This study has shown that sediments deposited due to predominantly westerly palaoflows are dominant
towards the upper section of the featured succession. Overall, the Brimham Rocks. ion is i

body architecture indicative of a braided river, though i d ignif

architectural elements present has not previously been examined in detail. The three-dimensional nature of the outcrops
enable the detailed i and bed-set i is to be i

internal facies arrangement present within the various archi elements, the three-di of these
elements, and the relationships of neighbouring elements can all be reconstructed in detail. Fluvial channel elements

undertooka both lateral and le, simple ts represent the
by sand-  migration of isolated ithin the channels. L fine-grained, represent
the various developed either on bar tops or in slack-water areas, for example in partially abandoned channel reaches. The
i p of an upper-delta plai hat was traversed by a i
such that the style of ~frequently g braided fined network of
i sandy barforms. The region was also influenced by episodic marine transgressions generating cyclic alluvial facies. Data
from this study are contributing to a broader research the linkage of fluvio-delt

defined by laterally extensive erosional surfaces contain a hierarchy of sets and cosets of sandstone and
Thin (sub-metre), crudely-parallel bedded, gravel- and small-pebble-grade conglomerates represent gravel sheets that

ith regard basin n
sediment delivery mechanisms in the Carboniferous, UK. This is important as it will further our understanding and

migrated as tractional loads in the basal parts of channels. Cosets of both trough and pl b bedded facies
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