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Abstract 

 

Fluvial sandstones in the Upper Williams Fork Fm show a variety of geometries, sedimentary facies, and amalgamation styles important for 

hydrocarbon production in the Piceance Basin. This study is based on measuring stratigraphic sections, acquiring outcrop gamma ray curves, 

and measuring lateral extent using GPS data in Rifle Gap and Coal Gulch, CO. Outcrop gamma ray logs are used for comparison with 

subsurface logs. Paleoflow data help correct for apparent vs. true channel width, and determine local drainage patterns. This high-resolution 

dataset will be integrated with a regional sequence stratigraphic and fracture dataset for a comprehensive understanding of the Upper Williams 

Fork Formation and the eastern Piceance Basin. Four sandbody types have been recognized: (1) single-story isolated channels, (2) laterally 

amalgamating channels, (3) multi-story channels, and (4) small single-story channels/crevasse splays. Sandbody types 1-3 are potential 

reservoirs, whereas type 4 is evaluated to be too small for economic production. Type 1 sandbodies (60% of sandbodies) are medium- to very 

fine-grained, structureless to cross-stratified sandstones with little-to-no muds. Type 2 (10%) consists of similar sandstones, but 0.5-1.5-m mud 

layers dissect the sand-rich intervals. Type 3 (20%) facies are similar to type 2. Type 4 (10%) is fine- to very fine-grained, structureless to 

cross-stratified and thinly laminated sandstone, with little-to-no muds. Sandstone facies variability is relatively low within the identified 

sandbody types, and thus less significant, compared to the channel dimensions and amalgamation style. In contrast, differences in mud 

distribution and architecture play a substantial role in pressure communication between sand-rich intervals within individual wellbores and 

adjacent wells. Stratigraphically, type 3 sandbodies are volumetrically more significant in the lower part of the section. Type 1 occurs 

throughout the section, but most commonly in the Middle and Upper Williams Fork. Types 2 and 4 do not have a clear relationship to 

stratigraphic position at the studied localities. Geographically, type 3 is more common in western part of the basin, whereas type 1 in the Rifle 

Gap area. This new understanding of geometry, architecture, and occurrence of sandbody types aims to help guide future drilling within 

Piceance fields, as well as similar fluvial, tight-gas sand plays.  
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Geologic Setting

‣ The Williams Fork Formation (WFF) is 
a Late Cretaceous-age sedimentary 
unit consisting of:

– Discontinuous, fluvial sandstones

– Mudstones

– Coals

‣ Depositional environment interpreted 
to be alluvial plain, lower coastal 
plain, and marginal marine 

Cole and Cumella (2003); Pranter et al. (2008)
Image from Blakey (2011)



Stratigraphy

From Hettinger and Kirschbaum (2003)



From Cumella and Ostby (2003)



From Cumella and Ostby (2003)



Petroleum System

From Hood and Yurewicz (2008)

From Cumella and Ostby (2003)



Previous Work

‣ Lorenz (1982)

‣ Lorenz et al. (1985)

‣ Hodges et al. (1981)

‣ Patterson et al. (2003)

‣ Pranter et al. (2009)



Research Focus

1. Define different types of 
sandbodies found along 
the Grand Hogback

2. Measure the geometries 
of these potential 
reservoirs

3. Determine facies types 
and abundance within 
respective sandbody 
types

4. Find potential barriers to 
reservoir production
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Lithofacies

LITHOFACIES LITHOFACIES TYPE GRAIN SIZE SORTING ROUNDNESS

1 Planar-Laminated Sandstone Upper-Fine to Lower-Medium Moderate to Well Sub-angular to Sub-rounded

2 Trough Cross-Laminated Sandstone Upper-Fine to Lower-Medium Moderate Sub-rounded

3 Planar Cross-Laminated Sandstone Upper-Fine to Lower-Medium Well Sub-rounded

4 Massive Sandstone Upper-Fine to Lower-Medium Well Sub-rounded

5 Rippled Sandstone Silt to Lower-Fine Well to Very-Well Rounded (?)

6 Channel-Fill Mudstone Silt - -

7 Floodplain Mudstone Silt - -

8 Thinly-Laminated Sandstone Silt to Lower-Fine Well to Very-Well Rounded (?)



Environment & Porosity/Permeability

From Soeder and Randolph (1987)



Sedimentary Structure P&P

From Doyle and Sweet (1995)



Sandbody Types

1. Single-Story, Isolated Channels

2. Laterally-Amalgamating Channels

3. Multi-Story Channels

i. Highest reservoir potential

4. Crevasse Channels & Splays

i. Lowest reservoir potential



Type 1 (Single-Story, Isolated Channels)

‣ Occurrence = 58%

‣ Mean Apparent Width = 157 m

– Range = 33 to 494 m

‣ Mean Axis Thickness = 6.0 m

– Range = 1.6 to 8.5 m

‣ Most Abundant Facies:

• Planar-laminated sandstone = 60%

• Planar cross-laminated sandstone = 20%

• Rippled sandstone = 15%

• Little-to-no mudstones



Type 2 (Laterally-Amalgamating Channels)

‣ Occurrence = 4 %

‣ Mean Apparent Width = 496 m

– Range = 436 to 556 m

‣ Mean Axis Thickness = 10.8 m

– Range = 8.5 to 13.0 m

‣ Most Abundant Facies:

• Massive sandstone = 50%

• Rippled sandstone = 35%

• Planar-laminated sandstone = 5%

• Mudstone/highly rippled sandstone between channels



Type 3 (Multi-Story Channels)

‣ Occurrence = 25%

‣ Mean Apparent Width = 463 m

– Range = 262 to 797 m

‣ Mean Axis Thickness = 21.3 m

– Range = 8.3 to 37.9 m

‣ Most Abundant Facies:

• Planar-laminated sandstone = 40%

• Planar cross-laminated sandstone = 20%

• Rippled sandstone = 20%

• Mudstone/highly rippled sandstone between respective 
channels



Type 4 (Crevasse Channels & Splays)

‣ Occurrence = 13%

‣ Mean Apparent Width = 38 m

– Range = 21.3 to 48.0 m

‣ Mean Axis Thickness = 1.9 m

– Range = 0.7 to 3.6 m

‣ Typically composed of thinly laminated or 
massive sandstones

• Little-to-no mudstones



Apparent Width



Axis Thickness





Future Work

‣ Continue measurements in Rifle Gap

– Stratigraphic sections

– Outcrop Gamma Ray

‣ Expand field area to Meeker and New Castle



Conclusions

‣ Eight lithofacies used to define stratigraphic architecture

– Based on sedimentary structures in effort to better characterize permeability 
within respective sandbody types

‣ Four sandbody types recognized in Rifle Gap based on 
channel architecture and geometry

• Type 1 = Single-Story, Isolated Channels

• Type 2 = Laterally Amalgamating Channels

• Type 3 = Multi-Story Channels

• Type 4 = Crevasse Channels & Splays

• Apparent relationship between geometry/lithofacies content 
and sandbody type
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