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Abstract

Prediction and characterization of sandstone reservoirs deposited in deep-water slope environments has significantly improved over the past
two decades, largely as a result of 3-D seismic data acquisition for appraisal and development. However, consistently accurate prediction of
sub-seismic reservoir heterogeneity remains elusive. High-relief slope systems are particularly challenging because of local gradient changes
caused by mass wasting and/or syn-depositional substrate deformation, in addition to turbidity-current processes. Comparison of sandstone
bodies from two outcropping slope systems in the Magallanes Basin, Chile, provide insights into patterns of sandstone-body geometry and
facies distribution, as well as linkages between sub-seismic- and seismic-scale stratigraphic packaging. The slope systems analyzed are both
from the Tres Pasos Formation; high-relief slopes prograded axially along the foredeep. The northern Tres Pasos (NTP) slope system is
dominated by evidence for frequent mass wasting, and the southern Tres Pasos (STP) consists of mapped clinoforms with > 1 km of relief. The
older NTP is ~50 km north of the STP.

Sandstone bodies of the NTP are attributed to intraslope fans and channelized lobes. Thick (20-100 m) mudstone-dominated intervals
interpreted as mass transport deposits (MTD) in between the sandstone bodies have a noticeable effect on overall sand body architecture. The
sandstone bodies of the STP represent channel-fills with systematic internal facies distributions, including sandstone-rich axes transitioning to
sandstone-poor facies in off-axis and margin positions. High-resolution 3-D mapping demonstrates that STP channel-fill bodies of similar size
and geometry cluster to form larger-scale channel complexes with dimensions similar to those imaged in seismic data. Although many of the
NTP sandstone bodies have favorable reservoir characteristics internally, their overall geometry is more variable and their stacking less
systematic compared to the channelized STP architecture. We interpret these fundamental differences to be a function of the overall slope
gradient and aggradation history. In the north, slope readjustment occurred frequently enough to significantly influence the substrate
topography over which sand-laden turbidity currents traversed. In contrast, the systematic channel-fill deposition and stacking of the STP
system suggests a long-lived phase of turbidity current delivery to the base of slope.
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Magallanes Basin slope systems C//
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Regional context for outcropping slope systems
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Channel axis-to-margin relationships C//
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Intra-channel facies relationships are systematic Cﬂi
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Intra-channel facies relationships are systematic Cﬂé
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Planform context = channel stacking patterns C/ﬁ

SYSTEMS




Channel stacking patterns
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Regional context for outcropping slope systems
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Northern Tres Pasos — Cerro Divisadero

mean paleoflow: dip
to oblique-dip view
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Intra-sand body facies relationships? <7/t
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Lateral facies changes:

 more amalgamated to lesser amalgamated (2a)

« Scour surfaces with truncation, bed-scale pinch-outs (2b)

Romans et al. (2009); Sedimentology
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Intra-sand body facies relationships? < 7t
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« 2.5 km
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Lateral facies changes:

 more amalgamated to lesser amalgamated (2a)

« Scour surfaces with truncation, bed-scale pinch-outs (2b)

Romans et al. (2009); Sedimentology



Intra-sand body facies relationships? <7/t
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Tabular (‘sheet-like’) architecture
with some lateral changes in degree
of bed amalgamation and bed-scale
compensational stacking
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Romans et al. (2009); Sedimentology




Sand bodies overlie chaotic/discordant mudstone C/
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Romans et al. (2009); Sedimentology




Facies architecture of overlying package (Unit 3) C/f%
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Unit 3:

« lenticular basal sand body 3a onlaps composite
surface towards the north-northeast
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« overlying subunits exhibit small-scale scouring
and general southward thinning and/or pinching

out

Romans et al. (2009); Sedimentology
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Northern Tres Pasos: Different style of slope architecture? Cﬂé

SYSTEMS

Generally comparable internal architecture
throughout >500 m thick succession - i.e., not
function of more distal settings in lower strata

Unit 4

300

meters

Unit 3

Romans et al. (2009); Sedimentology



Sierra Contreras (~20 km downdip of Divisadero) C//

NORTH SOUTH

Armitage et al. (2009); J.
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Sand bodies are generally tabular — the meso-scale
geometry that does exist is associated with underlying MTDs
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Influence of MTD topography C//

Highly variable
MTD topography
results in less predictable sand body archltecture
(compared to more systematic channels)

Armitage et al. (2009); J. Sed. Research
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Lateral facies prediction in deep-water sand bodies Cﬂé

MARGIN < AXIS » MARGIN

qustone-siltstone prone units thick—bedded‘ séﬁdéfone thinly interbedded sst and 5|Itstone

\

Prelat et al. (2010)

% Dave Hodgson explaining lobe architecture, Tanqua Karoo




Ongoing work  Rio Zamora transect  C_~ /&

F

New project in well
exposed region
between Divisadero
and Contreras aims to:

(1)correlate sand bodies at
km-scale

(2)examine internal facies
patterns w/in context of
topography
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Northern Tres Pasos sand body architecture C%

 We do observe lateral facies changes at the element
scale (5-20 m thick mappable sedimentary bodies)
... but, relationships are not as systematic*
compared to channel-fills of the southern TP

« Variable topography (as a result of mass wasting,
slope creep, etc.) imparts a significant influence on
sand-laden turbidity-current processes

 These sand bodies have some internal
characteristics of lobes (e.g., Tanqua Karoo of Prelat
et al., 2010); however, their overall geometry Is
lenticular

* consider this a hypothesis ... we need to collect more data and compile the statistics
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Short-lived accumulation vs. long-lived conduit? C_~

Adedayo et al. (2005); AAPG Bulletin




Short-lived accumulation vs. long-lived conduit? C_~
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Who Cares? So What? C//

i sea level

N . deltaic shelf-edge 7
T clinoform relief

—— EROSIONAL —
UNCONFORMITY _gnd
_ : h, = slope clinoform
H o= lower relief (slope readjustment relief
s~ clinoform relief surface)

LOWER SLOPE/
BASIN FLOOR —
DEPOSITS

Bauer and Hubbard (in prep)

Improved prediction
of reservoir-scale
patterns from larger-
scale stratigraphic

channel complexes/elements
context bound by broad inner levees

/> widespread
7" erosion surfaces
separate channel complexes

Macauley & Hubbard (2013); Mar. & Petrl. Geology



Who Cares? So What? C//
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ongoing work by Lisa
Stright and students
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For example, these outcrop- >
constrained architectural models being Off-Axis //
used to examine reservoir connectivity. I Margin j

Z-axis

Y-axis

Depicted intra-channel facies relationships
constrained by southern Tres Pasos outcrops ™" v foow

000000

(and comparable to other outcrop/subsurface
examples).

We can’t build reservoir models capturing facies
relationship for lenticular slope sand bodies until we
develop a comparable conceptual model
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